
www.it-ebooks.info

http://www.it-ebooks.info/


Mobile First Design with HTML5 
and CSS3

Roll out rock-solid, responsive, mobile first designs 
quickly and reliably

Jason Gonzales

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


Moblie First Design with HTML5 and CSS3

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1170913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-646-3

www.packtpub.com

Cover Image by Arvind Shetty (arvindshetty86@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/


Credits

Author
Jason Gonzales

Reviewers
Ahmad Alrousan

Daniel Blair

Martin Brennan

Acquisition Editor
Martin Bell

Owen Roberts

Commissioning Editor
Neil Alexander

Technical Editors
Chandni Maishery

Larissa Pinto

Copy Editors
Tanvi Gaitonde

Sayanee Mukherjee

Alfida Paiva

Project Coordinator
Suraj Bist

Proofreader
Stephen Copestake

Indexer
Rekha Nair

Production Coordinator 
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author

Jason Gonzales has worked as a musician and an English teacher, but front-end 
engineering is his passion. He is a self-taught engineer, but is an obsessive learner 
and researcher. He's been working on front ends for over seven years, but also 
does full-stack work and lots of fretting over making sites that have awesome user 
experiences. This keeps him learning pretty much on a daily basis, which is how he 
likes it.

I'd like to thank my wife, kids, and friends for putting up with me 
while working on this book. I'd also like to thank Bear Republic 
Racer 5, coffee, and vim.

www.it-ebooks.info

http://www.it-ebooks.info/


About the Reviewers

Ahmad Alrousan has been a professional developer for over seven years, 
specializing in building desktop, web, and mobile business applications for  
different industries.

He holds a bachelor's degree in Computer Engineering and he is a .NET Microsoft 
Certified Professional Developer (MCPD).

He spends a lot of time working on startups and learning new skills. He can be 
reached at http://alrosan.net.

Daniel Blair studied web development at Red River College in Canada. He is 
an independent web and mobile application developer. He specializes in Android 
where he has written several successful apps that do a wide range of tasks.

Dan also enjoys working with WordPress and regularly develops custom themes for 
clients that are both responsive and beautiful. A Linux enthusiast at heart, he often 
works with the Ubuntu desktop and server operating system and enjoys working 
with Linux compatibility issues.

Dan also runs a technology website that offers tutorials, reviews, and downloads. He 
also regularly blogs about the current open source, Linux, Android, and operating 
system news.

www.it-ebooks.info

http://www.it-ebooks.info/


Martin Brennan is a web developer working in Brisbane, Australia who  
develops primarily in the ASP.NET platform and has been doing so for the past  
three years. He works regularly with ASP.NET, VB.NET, C#, JavaScript, and 
MSSQL, and loves to work with JavaScript MV* frameworks. He spends his spare 
time learning new programming languages and frameworks and blogging at  
http://www.martin-brennan.com. Martin also enjoys reading, obsessively 
organizing his music collection, and blogging about liquor and bars with his best 
friend at http://www.imbibeblog.com.

www.it-ebooks.info

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can access, read and search across Packt's entire library  
of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On-demand and accessible via web browsers

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents
Preface	 1
Chapter 1: Mobile First – How and Why?	 5

What is Responsive Web Design?	 5
Prerequisites	 10

Andy Clarke's site	 10
GitHub	 10
My GitHub Fork	 10

Summary	 10
Chapter 2: Building the Home Page	 11

Preparing and planning your workspace	 11
Planning ahead	 12

Navigation	 14
Hero/slider	 14
Content panels	 14
Footer	 15

Let's build!	 19
Header	 20
Logo	 20
Navigation	 21

Hero	 29
Content panels	 31
Footer	 32
Making our page responsive	 35
Slider	 38

Summary	 43
Chapter 3: Building the Gallery Page	 45

Creating the wireframe	 45
The slim hero	 48
Content panels	 54

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ ii ]

The gallery detail	 57
The back link	 64
The gallery item JavaScript	 66

Summary	 68
Chapter 4: Building the Contact Form	 69

Making a form plan	 69
Handling mandatory fields	 70
The form's layout	 71
Input label magic	 73
JS validation fallbacks	 79

Summary	 80
Chapter 5: Building the About Me Page	 81

Justifying the About Me page	 81
Making the wireframes	 83
The markup	 84
Awesome icon fonts	 87
Summary	 91

Appendix A: Anatomy of HTML5 Boilerplate	 93
What is HTML5 Boilerplate?	 93

Conditional comments	 94
Many, many mobile meta tags	 95
Including the scripts you'll need	 96
The helper.js file	 97

Appendix B: Using CSS Preprocessors	 99
Why?	 100
How	 100

CodeKit	 100
Compass	 101
The Sass/LESS gem	 101
Rails	 102

What	 102
Resources	 103

Index	 105

www.it-ebooks.info

http://www.it-ebooks.info/


Preface
Building websites that display well on everything from web-enabled smartphones, to 
tablets, to laptops and desktops, is a daunting challenge. The myriad permutations of 
screen sizes and browser types might be a reason enough to not even try. But if your 
business counts on getting web content to people on these devices and you need 
your business to look tech-savvy, you must put your best foot forward. In this book, 
you will see that with the help of some easy-to-understand principles and an open 
source framework you can build a mobile first responsive website fast.

What this book covers
Chapter 1, Mobile First – How and Why? gives a quick introduction to mobile  
first strategy.

Chapter 2, Building the Home Page, dives right in and builds the face of your site and 
the foundation for the rest of the site.

Chapter 3, Building the Gallery Page, builds a responsive page to show off your work.

Chapter 4, Building the Contact Form, lets prospective clients contact you from a device 
of any screen size.

Chapter 5, Building the About Me Page, makes an attractive, responsive page to help 
people get to know you.

Appendix A, Anatomy of HTML5 Boilerplate, gives an overview of HTML5 Boilerplate, 
including meta tags and scripts.

Appendix B, Using CSS Preprocessors, helps you learn the basics of CSS Preprocessors 
and how to use them.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 2 ]

What you need for this book
You should have Windows or Linux. The instructions in this book favor Mac OS X 
and Linux, but for the most part we will only be writing plain text and using very few 
command-line tools. In places where we do, I do my best to offer up resources for how 
to get similar results on a Windows computer. You should also have a text editor. It 
will be very helpful if you know how to launch and use a command-line tool.

Who this book is for
This book is for you if you are curious or excited about responsive design and how  
it can help provide usable web interfaces on everything from mobile phones to 
desktop computers.

In terms of technical skills, this book is targeted at both beginner to intermediate 
developers as well as designers. In other words, you should already know how to 
build an HTML page and style it with CSS by using a text editor of some kind. You 
don't have to be an expert at any of these things though. You also don't need to be a 
command-line expert, but hopefully you are open to using command-line tools. They 
are quite helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"When the browser replies yes to both screen and min-width 768px, the conditions 
are met for applying the styles within that media query."

A block of code is set as follows:

<!DOCTYPE html>
  <head>
    <link rel="stylesheet" href="css/main.css">
  </head>
  <body>
    <button class="big-button">Click Me!</button>
  </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 3 ]

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "I went 
ahead and created links to pages that don't exist yet, so if you click on them you will 
get a 404 file not found message."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ 4 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile First – How and Why?
If you are in the business of building/maintaining a company's website or building 
web properties for an agency, you can and should be using mobile first strategies. 
Why? Because it is of value to your end product. You will end up with a website  
that is used by most of the people on all the devices and browsers possible.

This book is targeted at both beginner and intermediate developers as well as 
designers. It is also intended to be for those in business and management who want 
to gain a deeper understanding of what is possible (and, by extension, what may not 
be practical) with modern tools and strategies on the web. The code examples in this 
book, when used step-by-step, should help anyone with even basic development 
skills to get a deeper understanding of what is possible as well as how it is possible. 
Of course I love building things and I do it every day, but for those of us who also 
have to strategize and educate clients and coworkers, having procedural knowledge 
of how to make a mobile first website is qualitatively better than only having the 
knowledge of theory and concepts.

What is Responsive Web Design?
Responsive Web Design (RWD) is a set of strategies used to display web pages 
on screens of varying sizes. These strategies leverage, among other things, features 
available in modern browsers as well as a strategy of progressive enhancement 
(rather than graceful degradation). What's with all the buzzwords? Well, again, once 
we dig into the procedures and the code, it will all get a lot more meaningful. But 
here is a quick example to illustrate a two-way progressive enhancement that is used 
in RWD.

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile First – How and Why?

[ 6 ]

Let's say you want to make a nice button that is a large target and can be reliably 
pressed with big, fat clumsy thumbs on a wide array of mobile devices. In fact, 
you want that button to pretty much run the full spectrum of every mobile device 
known to humans. This is not a problem. The following code is how your (greatly 
simplified) HTML will look:

<!DOCTYPE html>
  <head>
    <link rel="stylesheet" href="css/main.css">
  </head>
  <body>
    <button class="big-button">Click Me!</button>
  </body>
</html>

The following code is how your CSS will look:

.big-button {
  width: 100%;
  padding: 8px 0;
  background: hotPink;
  border: 3px dotted purple;
  font-size: 18px;
  color: #fff;
  border-radius: 20px;
  box-shadow: #111 3px 4px 0px;
}

Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.PacktPub.com. 
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed 
directly to you.

So this gets you a button that stretches the width of the document's body. It's also 
hot pink with a dotted purple border and thick black drop shadow (don't judge my 
design choices).

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 7 ]

Here is what is nice about this code. Let's break down the CSS with some imaginary 
devices/browsers to illustrate some of the buzzwords in the first paragraph of  
this section:

•	 Device one (code name: Goldilocks): This device has a modern browser, with 
screen dimensions of 320 x 480 px. It is regularly updated, so is highly likely 
to have all the cool browser features you read about in your favorite blogs.

•	 Device two (code name: Baby Bear): This device has a browser that partially 
supports CSS2 and is poorly documented, so much so that you can only 
figure out which styles are supported through trial and error or forums. 
The screen is 320 x 240 px. This describes a device that predated the modern 
adoption levels of browsing the web on a mobile but your use case may 
require you to support it anyway.

•	 Device three (code name: Papa Bear): This is a laptop computer with a 
modern browser but you will never know the screen dimensions since  
the viewport size is controlled by the user.

Thus, Goldilocks gets the following display:

Because it is all tricked out with full CSS3 feature, it will render the rounded corners 
and drop shadow.

Baby Bear, on the other hand, will only get square corners and no drop shadow (as 
seen in the previous screenshot) because its browser can't make sense of those style 
declarations and will just do nothing with them. It's not a huge deal, though, as you 
still get the important features of the button; it stretches the full width of the screen, 
making it a big target for all the thumbs in the world (also, it's still pink).

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile First – How and Why?

[ 8 ]

Papa Bear gets the button with all the CSS3 goodies too.

That said, it stretches the full width of the browser no matter how absurdly wide 
a user makes his/her browser. We only need it to be about 480 px wide to make it 
big enough for a user to click and look reasonable within whatever design we are 
imagining. So in order to make that happen, we will take advantage of a nifty CSS3 
feature called @media queries. We will use these extensively throughout this book 
and make your stylesheet look like this:

.big-button {
  width: 100%;
  padding: 8px 0;
  background: hotPink;
  border: 3px dotted purple;
  font-size: 18px;
  color: #fff;
  border-radius: 20px;
  box-shadow: #111 3px 3px 0px;
}

@media only screen and (min-width: 768px){
  .big-button { 
    width: 480px;
  }
}

Now if you were coding along with me and have a modern browser (meaning a 
browser that supports most, if not all, features in the HTML5 specification, more on 
this later), you could do something fun. You can resize the width of your browser to 
see the start button respond to the @media queries. Start off with the browser really 
narrow and the button will get wider until the screen is 768 px wide; beyond that the 
button will snap to being only 480 px. If start off with your browser wider than 768 
px, the button will stay 480 px wide until your browser width is under 768 px. Once 
it is under this threshold, the button snaps to being full width.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 9 ]

This happens because of the media query. This query essentially asks the browser 
a couple of questions. The first part of the query is about what type of medium it 
is (print or screen). The second part of the query asks what the screen's minimum 
width is. When the browser replies yes to both screen and min-width 768px, the 
conditions are met for applying the styles within that media query. To say these 
styles are applied is a little misleading. In fact, the approach actually takes advantage 
of the fact that the styles provided in the media query can override other styles set 
previously in the stylesheet. In our case, the only style applied is an explicit width for 
the button that overrides the percentage width that was set previously.

So, the nice thing about this is, we can make one website that will display 
appropriately for lots of screen sizes. This approach re-uses a lot of code, only 
applying styles as needed for various screen widths. Other approaches for getting 
usable sites to mobile devices require maintaining multiple codebases and having to 
resort to device detection, which only works if you can actually detect what device 
is requesting your website. These other approaches can be fragile and also break the 
Don't Repeat Yourself (DRY) commandment of programming.

This book is going to go over a specific way of approaching RWD, though. We will 
use the 320 and Up framework to facilitate a mobile first strategy. In short, this 
strategy assumes that a device requesting the site has a small screen and doesn't 
necessarily have a lot of processing power. 320 and Up also has a lot of great helpers 
to make it fast and easy to produce features that many clients require on their sites. 
But we will get into these details as we build a simple site together.

Take note, there are lots of frameworks out there that will help you 
build responsive sites, and there are even some that will help you build 
a responsive, mobile first site. One thing that distinguishes 320 and Up 
is that it is a tad less opinionated than most frameworks. I like it because 
it is simple and eliminates the busy work of setting up things one is 
likely to use for many sites. I also like that it is open source and can be 
used with static sites as well as any server-side language.

www.it-ebooks.info

http://www.it-ebooks.info/


Mobile First – How and Why?

[ 10 ]

Prerequisites
Before we can start building, you need to download the code associated with this 
book. It will have all the components that you will need and is structured properly 
for you. If you want 320 and Up for your own projects, you can get it from the 
website of Andy Clarke (he's the fellow responsible for 320 and Up) or his GitHub 
account. I also maintain a fork in my own GitHub repo.

Andy Clarke's site
http://stuffandnonsense.co.uk/projects/320andup/

GitHub
https://github.com/malarkey/320andup

My GitHub Fork
https://github.com/jasongonzales23/320andup

That said, the simplest route to follow along with this book is to get the code  
I've wrapped up for you from: https://github.com/jasongonzales23/
mobilefirst_book

Summary
In this chapter, we looked at a simple example of how responsive web design 
strategies can serve up the same content to screens of many sizes and have the layout 
adjust to the screen it is displayed on. We wrote a simple example of that for a pink 
button and got a link to 320 and Up, so we can get started building an entire mobile 
first-responsive website.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page
In this chapter, we are going to start using the 320 and Up framework to immediately 
get started on building the home page of our example portfolio site. We will start off 
with some basics of where specific code goes and why. We will then quickly move 
on to building our page with many of the typical elements of a portfolio home page: 
navigation, hero/slider, and a triplet of content panels. If you don't know what these 
terms mean, don't worry, you will soon!

If you have successfully downloaded and unzipped all the code from the link at the 
end of Chapter 1, Mobile First – How and Why?, you are ready to go. If not, go back and 
use the link there to download the sample code and return.

Preparing and planning your workspace
Everyone has preferred methods for where they keep their code and how 
they organize it, and there are a lot of conventions in web development about 
organization that are great to know about. Ultimately, if you have a workflow you 
like for working with code, especially code from tutorials, please just go ahead and 
use it. But for those of you who don't, I suggest you place the code you download in 
some kind of working directory where you keep (or plan to keep) all web projects. I 
typically keep all my web code in a directory I call work in my home folder. So on a 
Unix or Mac OS X machine, it would look like this:

~/work/320-and-up

A few last notes about where to put your code. If you are using this book specifically 
for the purpose of building something you want to deploy and use, you may only 
want to use the sample code as a reference and build your project using only the 
320 and Up framework files provided. However, ensure that you put all of it in a 
directory named something other than 320 and Up. 

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 12 ]

Regardless of how you proceed from your end, I will provide the before and after 
code in every chapter so that you can have a template of sorts to get started and also 
an example of the final product that we will have by the end of this chapter. If you're 
just getting started and all this confuses you, just copy the code and edit it. You can 
always download a fresh copy if you need it later.

If you look inside the ch2 directory, you should see the two folders before and 
after. From here on, I am going to assume that you will take the simplest route and 
directly edit the before files. But please do carry on with your preferred way.

Go ahead and move to or look into the before directory. You will see the 320andup 
folder that I cloned from Andy Clarke's GitHub repository (repo). All I did was 
change location into the before directory by typing the following command line:

$ cd before

Then I cloned the code from the repo:

git clone git@github.com:malarkey/320andup.git

If you don't want to mess around with any of this, just use the code I have provided. 
I just want you to know how I got the code there.

Once you look inside the 320andup folder, you will see a lot of files. Don't stress  
out. I will explain what we are working with as we go. And some of the files we 
simply won't use. If you were going to deploy this code, I would encourage you  
to go through some kind of production process to deploy only the code you 
really need. That is beyond the scope of this book though, because we will focus 
exclusively on building.

Planning ahead
I know you are probably excited to get started on writing some code, but first we 
need to do a bit of planning on what it is we will be building. When I prepare to 
build a site, this is what I do first so that I have a reference for what I am building 
with code. It's good practice; you don't want to just wing it. But it also gets more 
complicated when you are building a responsive site.

That said, here is the formula we will follow for each page that we will build:

1.	 Describe the elements we want on the page and their hierarchy.
2.	 Draw some simple pictures (called wireframes) of the elements on the page 

for all the different screen sizes we are coding to.
3.	 Write some code for a 320 px wide screen (with some thinking ahead).
4.	 Write some code for the other screen sizes we need to code for.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 13 ]

Let's start with step 1. Our portfolio site is going to have the following elements on 
the home page:

•	 Navigation menu
•	 Hero/slider
•	 Triad of content panels
•	 Footer

This is a fairly effective page layout for a portfolio site but it can work just as well 
for a company website. Before even designing a page, we should take a moment to 
plan out what the page content will look like in a really abstract way. Typically, the 
best way to represent this is with a wireframe. A wireframe should show where the 
content is placed on the page as well as the relative size. Here is what our site looks 
like as a desktop layout:

I quickly made that image in Photoshop, but you can easily do it in any image editor 
(in fact, many of my colleagues and I really like doing it with simple collaborative 
image editors, such as the one in Google Drive). You might want to take a moment 
right now to make your own image if you are making something that is different 
from this example.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 14 ]

The important thing in this phase is not to think about dimensions just yet (but 
that will come soon), and think instead about each kind of content and evaluate its 
importance with regard to the purpose of the site. The purpose of this portfolio site 
is to showoff our work so that we can get hired. To achieve that end, we've decided 
to have a home page, a gallery page, a contact form, and an About Me page. Not 
groundbreaking, but pretty effective. Next, let's examine how the home page can 
support the purpose of the site.

Navigation
On the home page, the navigation area will link to those pages I listed in the 
previous section:

•	 A logo
•	 Home
•	 Gallery
•	 Contact
•	 About Me

Hero/slider
This area is large and eye-catching. Let's plan to put some bold images and/or  
text here to drive people to the gallery work we want to highlight as well as the 
contact form.

Content panels
These areas should highlight the purpose of the site. I think that these areas are for 
those who will take the initiative to scroll down. In other words, those willing to scroll 
down are curious and we should supply them with more details about the purpose 
of the site. For example, my content might highlight three skill areas: frontend 
engineering, user experience, and visual design. Since I am mainly a frontend 
engineer, it is the highest priority; the next priority being user experience and the last 
being visual design. While all three will be visible at once on a desktop or a larger 
tablet, we can't comfortably fit all three in view on smaller tablets and mobiles.

For yourself, think carefully about the three areas you want to highlight. It's common 
to dedicate a panel to social media integration as well. Whatever you decide on, 
make sure it gives more detail and doesn't just repeat the same content on the page.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 15 ]

Footer
The footer will have a short statement and a link at the top for the purpose of getting 
back to the main navigation. There's a really good reason to have a link to the top, 
especially on mobiles. On a mobile device, we need to provide an easy way for users 
to navigate from the top to the bottom of the page without having to manually scroll.

Ok, now we have our content prioritized and categorized, but you should have 
noticed a problem with the wireframe. I started with a desktop view but this book 
is mainly about designing for mobiles first, right? The reason I made that wireframe 
first is because I assume that most readers have designed a desktop page before 
moving on to mobile designs. In fact, it is common to only design for the desktop 
view! From here on, we will strictly be focusing on mobiles first. I promise!

So knowing what our content is, we now need to make a layout that will work for 
mobiles. First, I'll show you what I think our layout should be and then explain the 
reason. Here it is:

Notice that we have to account for the address bar and the toolbar. Keep in mind that 
we aren't only designing for the iPhone. I just made that as a quick example, mostly 
because it is familiar to so many. The point is, on mobiles not only are you dealing 
with a small screen, you can't even count on getting all of the small screen since most 
mobile web browsers need some "chrome" for address and toolbar. There are some 
things we can do to try to reclaim that real estate, but more on that later. For now, 
we need to make a pessimistic assumption in order to plan our layout. And if we are 
using the currently very popular iPhone 4/4S's mobile Safari browser as an example, 
we only have 320 px by 376 px to work with because we use 60 px for the address bar 
and 44 px for the toolbar. The iPhone 5 is taller by about 88 px. To repeat though, we 
are not designing this just for the iPhone. We are looking at this example mainly to 
make a point—you can't necessarily fit a lot of content in the viewport.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 16 ]

In fact, it looks like we can only fit a navigation bar and the hero/slider. Better make 
sure that the content in the hero/slider counts for something! We won't focus too 
much on content strategy in this book, as there are a lot of other people who are 
far more experienced at it than me; nevertheless, let's do our best to put some well-
chosen content there.

That said, we can still include all the other content; it's just out of view for now. If 
the users scroll down, they should still be able to see the three content panels just 
stacked rather than spread along the width of the page. A user who has scrolled 
down should see this:

If the users continue to scroll down, they will see the third panel and eventually the 
footer. To reiterate, by the time they get to the footer, it might be really helpful to 
have an easy access to site navigation from here.

Ok, so I bet you are eager to write some code and build! We can do it now that we 
know what we are building. Since a 320 px wide screen needs everything to fill the 
width of the screen, and all the main blocks are to be stacked, the HTML and CSS 
code will be quite simple!

Go ahead and open up the index.html file inside the 320andup directory; or follow 
in the code sample and open up the file in this path:

ch2/before/320andup/index.html

We are going to take a quick look at this page in a browser and then we are going to 
change it to add our own content. Go ahead and view this file in a browser in your 
preferred manner. I prefer to use a Python simple HTTP server (see the following 
tip). But since we are only working with a static site, you can just double-click on the 
file or even drag it into a browser window.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 17 ]

Python simple HTTP server
I hate to be so Mac OS X-centric, but if you are using a Mac this will be 
easy. If you are using another *nix OS, it will still be pretty easy. If you are 
using Windows, it will be a little more work; nevertheless, it will probably 
be worth it.
To start a Python simple server on a Mac, you simply browse (via the 
command line) to the directory you want to serve up to a browser  
and type:
python –m SimpleHTTPServer

If using another *nix OS, you may need to install Python using your 
package manager and then run the preceding command. For Windows, 
you will need to install it from http://www.python.org/getit/. 
Follow the instructions to get it all going and then use the command line 
to run the same command.

For those of you familiar with WAMP/MAMP solutions, you may want to use those 
instead. You can find them at:

•	 http://www.apachefriends.org/en/xampp.html

•	 http://www.mamp.info/en/index.html

I highly recommend that you use a cutting edge browser, such as Chrome or Firefox, 
for the work we will be doing in this book, as they have really useful development 
tools that help you see what is going on with your code. Development tools make 
it easy for you to understand how things work as well as how to solve problems. In 
fact, many of the features we will be using are only available in modern browsers. So 
if you don't have one, go get one; they are all free and easy to install. For the record, 
my main development browser is Chrome.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 18 ]

Ok, once you have this in your browser, you should see what I have in the following 
image. Take a moment to read through it. You may have a lot of questions, and that 
is a good thing. By the time we build things, you will know a lot more.

So, the first thing we need to do is edit this file (the one on the path ch2/
before/320andup/index.html) to make it our own. Basically, we want to hollow 
out this page by removing the header, footer, and everything in between. In the 
before directory, I have provided an example called index_stripped.html. Feel 
free to compare your effort with that example file (if you are just beginning as a 
developer, don't be tempted to just change the name of index_stripped.html to 
index.html and use it; make the effort to edit the code successfully).

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 19 ]

One more thing we will want to do right off the bat is make it so that we can pull in 
the JavaScript library jQuery from Google's servers. Google is very nice and hosts 
a ton of JavaScript and AJAX related libraries. So, many of us can use Google as a 
Content Delivery Network (CDN). However, you may notice that the line of HTML 
that pulls it in from Google's service is missing something:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.
js"></script>

It's missing the HTTP protocol, which is fancy talk for the first part of a URL, before 
the slash. I bet you're thinking why? The reason is that we need it to work within either 
http or https domains, depending on what our site is. Leaving it off essentially makes 
it so that it defaults to whatever the HTTP protocol is for the page this code lives in. If 
you specify it incorrectly as http within an https site (which is secure), it will throw 
a security warning to all well-made browsers because you can't serve up insecure 
content within the context of a secure site. Otherwise, http is just fine (you can also 
leave this out entirely and whatever protocol your site is using will apply).

For this project, I am using http; however, if you are building a secure site, by all 
means, make sure you make this secure as well. Here is what your code should look 
like now:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.
min.js"></script>

Now if you refresh the page, you should not notice anything unless you look under 
the hood to see where your jQuery came from. If you don't know how to inspect 
whether site resources are downloading, don't worry about it too much right now. 
But if you are seeing errors, just double-check to make sure your code matches the 
example. You can check to see if you are getting JavaScript errors in any developer 
console, regardless of the browser you are using (even IE). Once this is working 
correctly, you can first have the page request that the jQuery library come from 
Google's service. If that fails, it will come from your site's server. Again, I won't go too 
much into the details of this boilerplate code, but it is good to know that the following 
line of HTML is a backup in case Google can't serve up the jQuery file when you 
request it:

<script>window.jQuery || document.write('<script src="js/jquery-
1.7.2.min.js"><\/script>')</script>

Let's build!
OK! All the fundamentals are now in place. Let's build the components of the 
page for a small screen first. Let's go from the top of the page to the bottom. As I 
mentioned earlier, it typically makes sense for all the content to span the full width 
of small screens. Let's begin with the header and navigation.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 20 ]

Just below the opening body tag, let's put some HTML for our navigation. It should 
look like this:

<body class="clearfix">
<!-- PUT YOUR CONTENT HERE -->
<header>
  <nav class="navbar open">
    <div class="navbar-inner">
      <div class="container">
          <a class="logo" href="./">Logo</a>
          <ul class="nav">
            <li><a href="./index.html">Home</a></li>
            <li><a href="./gallery.html">Gallery</a></li>
            <li><a href="./contact.html">Contact</a></li>
            <li><a href="./about.html">About Me</a></li>
          </ul>
        </div>
    </div>
  </nav>
</header>

Header
We created a header block. We are using this for both semantic and layout reasons. 
The header will mainly contain the logo and navigation.

Logo
The logo will be contained in an <a> tag. This follows the unofficial web convention 
that the site logo should link back to the home page. We will still have an explicit 
link to the home page but it is helpful to offer both the links to users without being 
confusing. I use the shorthand ./ in order to have the page link back to the root of the 
current level of depth; for production, you may want to take the extra step of having 
it linked to your fully qualified root domain (for example, www.yourdomain.com/
index.html).

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 21 ]

Navigation
We create a semantic <nav> block and place some nested containers ending in an 
<ul> (unordered list) inside. Each <li> (list item) will have a link to each page on 
our website. For this project, we will handcode each link, but if you were using some 
kind of framework, these links would be generated dynamically. I went ahead and 
created links to pages that don't exist yet, so if you click on them you will get a 404 
file not found message.

There are a few key things to notice about navigation. Right now, without any CSS 
applied, the basic layout is virtually what we want. Each link is stacked vertically 
and with some additional padding that will be a clear target for fat fingers the world 
around. This is all pretty ideal, since it's always good to know that your site will still 
function without CSS. This is good for many reasons. One being the case that your 
CSS fails to get served up for some reason. Another includes users who are using 
text-only browsers. You will also notice that there are a few relatively non-semantic 
containers here that function as utility containers. A few we will use soon.

One problem with this navigation is that once we style it properly, it will eat up a 
lot of screen real estate. The minimum area for an element that requires interaction 
on touch interfaces is roughly 50 px by 50 px so that it is wide enough for a 
fingertip. There is some leeway here though. For example, if the touch target is 
really wide, you can get away with making it about 40 px tall but that can get risky. 
Some usability experts recommend making your touch targets as wide as 60 px to 
accommodate the fattest finger—the thumb, since many users use it to get around 
on a mobile. For argument's sake though, let's make a compromise and assume 
each element to be 40 px tall and full-width, or at least 320 px wide. That means our 
navigation with the logo will be 200 px tall. We have potentially eaten up over half 
our screen real estate with just navigation and we do need to remember the potential 
chrome that we have to plan for. Greeting users with only navigation and no actual 
content is just plain bad.

We will need to do something about this!

Luckily, a convention has rapidly emerged to solve just this problem. Most mobile-
friendly websites and mobile apps use an icon with a series of three parallel lines to 
signify a hidden navigation menu.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 22 ]

To the user, this should indicate that a touch or click of this element will reveal or 
hide the navigation. This assumes that the user knows the convention, of course. For 
this reason, there may be some situations where this is not appropriate, especially on 
sites where there is little navigation. That said, we are going to go ahead and build 
our navigation following this convention in order to save screen space and learn how 
to make this enhancement.

Here is the basic strategy we will use. We will hide and show the menu via CSS and 
use JavaScript to only change the class. This way, if users have no JS, they will still 
get the menu, but unfortunately it will be completely expanded.

So first things first; we will add a button. Add your button just below the <a> tag that 
will hold our logo. We will style the menu in a bit to organize things better, but let's 
get this working first. Here is what your navigation HTML should look like now:

    <nav class="navbar">
    <div class="navbar-inner">
      <div class="container">
        <button class="menu-button">
        </button>
        <a class="logo" href="./">Logo</a>

If you refresh, you will now see a little nubbin of a button just to the left of your logo. 
It's not much to look at now, but be patient. We will write the JS code that will toggle 
some class to hide/show the navigation menu. Go ahead and open up the file in the 
path ch2/before/320andup/js/script.js. At this point, it should be an empty 
file. We are going to write some simple JavaScript that will hide and show the menu. 
Again, if a user doesn't have JS, the menu simply stays open. This is just one small 
example of progressive enhancement, there are more to come.

Next, we'll write this JS to assign a new class to the menu when a user touches the 
button. We are going to use some simple, elegant jQuery:

$(document).ready(function(){
    //all code that should run after the DOM loads goes here
    $('.navbar').removeClass('open');    
    $('.menu-button').on('click', function(){
        $('.navbar').toggleClass('open');
    });
});

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 23 ]

Here is what this code does. The JS that appears first, $(document).ready(), 
is some jQuery that basically waits for the moment when the DOM has loaded, 
then executes all code placed within the ready function. It is typical to use this to 
make sure all the elements of the DOM are there so that the code that calls specific 
elements are actually all there.

The next line, $('.navbar').removeClass('open'), will remove the open class 
that we will use later to make the menu open and close with some CSS. If the device 
has no JS, then this class is never removed and the open style is the only one that will 
ever be applied to the menu!

The next line of code beginning with $('.menu-button').on('click', function()
{ attaches an event listener to the button that has a class of .menu-button. When a user 
clicks on the button, the code inside that function runs. Additionally, a touch event is 
translated into a click by mobile browsers, so both kinds of events are handled with 
this code. But getting back to the function—after a user touches or clicks, the function 
simply adds or removes the class open on the element with a class navbar. From here 
on, I won't go into too many details about the JavaScript we write. If you need more 
help in understanding it, that is beyond the scope of this book. But if you don't feel 
ready to dig into JavaScript, just follow along and you should learn something!

Now, if you save this code and reload your page, you can try this out. If you open 
your favorite developer tools and look at the <nav> tag when you click on the button, 
you should see the class open appear and disappear from that element. If it's not 
happening, or if you are getting errors, try retracing your steps and see if you missed 
some code. Also, try running the complete version of code from this chapter to see if 
it works properly. If the code I've provided you doesn't work, something other than 
the code is amiss.

If you don't see any errors, but at the same time don't see anything changing in 
your browser's inspector, just hang tight. It may not be updating the DOM for some 
reason. But we will soon see proof of its working once we add some styles.

Most of the CSS I will be writing can be written in plain CSS, SASS, or LESS. For 
a few reasons, I prefer to work with SASS. This subject too is outside the scope 
of this book. But for brevity, I will do my best to show you how to do all the CSS 
code examples both in SASS and plain CSS. Please read Appendix B, Using CSS 
Preprocessors and other preprocessors if you need to learn more. Otherwise, follow 
along and I will continue to show code examples of both CSS and SASS. The finished 
code samples are all in CSS and SASS/SCSS.

First things first, let's arrange the navigation menu so that things are laid out in a 
way that enhances usability and appearance. For example, let's get all those stacked 
elements to be 40 px tall.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 24 ]

If you are following and using SCSS, go ahead and open _page.scss inside the scss 
folder and make sure you change the name of the css file that is linked in the header 
of your page to:

<link rel="stylesheet" href="css/320andup-scss.css">

There are other ways you could handle this, of course, but let's keep it simple. If you 
are editing the plain CSS, just open the file in the path:

ch2/before/320andup/css/320andup.css

Again, you can always change the name of this file and the one linked to in your 
header if you wish, but I suggest we keep it simple for now and leave it as it is. 
Now, let's start styling this page. Just a quick note—for many of these styles, I am 
borrowing heavily from the great and powerful Twitter Bootstrap framework, which 
is a frontend framework that includes boilerplate CSS and HTML. You can include it 
with 320 and Up, but I decided not to include it in this book for simplicity. That said, 
if you decide to combine the two (and if you like building things well and quickly, 
I highly recommend you do), you will find that many of the styles I use are quite 
compatible with it. Now let's go!

First, let's get the button moved to where it should be and get it to look good:

.menu-button {
  display: block;
  float: right;
  background: #444;
  border: 1px solid #000;
  padding: 7px 10px;
  margin: 5px;
}

The button is far away from all our links, so that users won't accidentally touch it 
when they are trying to open a link. It also looks a little better, but still needs those 
three lines that we discussed earlier. We won't need any images though.

If you are using any SASS or LESS, you can take advantage of one of the many handy 
mixins provided in 320 and Up. You should open up _mixins.scss and take a quick 
look at all of them. Again, if you are new to them, I will quickly give an example of 
what is so cool about them in just a moment; however, first a quick explanation of 
what mixins are in SASS and why they are so great.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 25 ]

In SASS, you can define mixins by typing @mixin followed by some CSS that you 
want to generate. This is great if you have a complicated task that you want to 
accomplish without repeated efforts. This harkens back to the concept of DRY; 
for example, we can make three rounded rectangles by using the rounded corners 
of CSS3 for the menu button. The trouble is that currently there are at least three 
different ways to declare rounded corners, thanks to vendor prefixes. For all rounded 
corners, we have to define them like so:

-moz-border-radius
-webkit-border-radius
border-radius

So, we could type the preceding code every time we need a rounded corner 
anywhere in our site styles. Or, we could save the effort and put these in a mixin. The 
rounded mixin does just that for you. Have a look at it in the _mixins file right now. 
Mixins in SASS do a lot of things, but this case alone is compelling. It essentially 
behaves like a callable function that executes when the code is compiled to CSS  
(read Appendix B, Using CSS Preprocessors, for more details). You code @include 
rounded and the CSS inside that mixin is rendered to your final CSS. In this case,  
you get all those ways of creating rounded corners without all the typing.

If you're already using SASS, here is all you need to do to see it in action on your site 
(if you're not, read Appendix B, Using CSS Preprocessors, to see how to get it going). 
First, we will add some new markup to our button.

<button class="menu-button">
          <span class="icon-bar"></span>
          <span class="icon-bar"></span>
          <span class="icon-bar"></span>
</button>

Write this SCSS nested inside your .menu-button SCSS:

  .icon-bar {
    display: block;
    width: 18px;
    height: 2px;
    margin-top: 3px;
    background-color: #fff;
    @include rounded(1px);
  }

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 26 ]

The rounded mixin will render the following CSS (or you can handcode this if  
you wish):

  .menu-button .icon-bar {
    display: block;
    width: 18px;
    height: 2px;
    margin-top: 3px;
    background-color: #fff;
    -webkit-border-radius: 1px;
    -moz-border-radius: 1px;
    border-radius: 1px; }

The last three lines are generated by the mixin when the SCSS is processed. This is 
quite a time-saver. By now your button should be looking neat and floating over  
to the right!

Now, let's get all those links to look neat. Here is what your SCSS should look like:

.navbar {
  background: #1b1b1b;
  .navbar-inner {
     .logo{
      display: block;
      padding: 9px 15px;
      font-weight: bold;
      color: #999999;
      margin-bottom: 4px;
    }
    .nav {
      a {
        @extend .logo;
      }
    }
  }
}

And here is the CSS:

.navbar {  
background: #1b1b1b; }
.navbar .navbar-inner {
    background: #1b1b1b; }
    .navbar .navbar-inner .logo, .navbar .navbar-inner .nav a {
      display: block;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 27 ]

      padding: 9px 15px;
      font-weight: bold;
      color: #999999;
      margin-bottom: 4px; }

This will give a neat contrast and make the links 40 px tall. But now we need to do 
something to get that menu hiding and showing. My preference is to do it without 
JavaScript animation. Ok, it's more than a preference actually. CSS3 animations will 
be smoother for the most part, furthermore; this really comports with the ideology of 
progressive enhancement. If a device does not support CSS3 animations, it is quite 
possible that it isn't really powerful enough to deal with JavaScript animations either, 
so why are you forcing it to run JS loops just for a nice-to-have feature? On the other 
hand, most devices that support CSS3 animations optimize these animations by 
utilizing the GPU. Even if they don't, they will still play a JS animation as well.

I won't get too clever with my arguments, but this code essentially works well if  
you are on a slow device that doesn't support CSS3 animations and if you are on  
the slickest mobile out there.

First things first, we need to make one embarrassing concession here. CSS3 
animations will not work when the height of an element is automatically calculated 
(yet!). This doesn't have to matter for us, since we can easily know the height of our 
navigation menu. But if you wanted to use this kind of animation on a menu of an 
unknown size, you could not use this approach. There are other approaches for that 
scenario; however, they are not included in this book. J

So, here is what your SCSS now needs to look like:

.navbar {
  background: #1b1b1b;
  overflow: hidden;
  max-height:44px;
  @include transition(max-height .5s);
  &.open{
    max-height: 220px;
  }
  .navbar-inner {
    .logo{
      display: block;
      padding: 9px 15px;
      font-weight: bold;
      color: #999999;
      margin-bottom: 4px;
    }
    .nav {

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 28 ]

      margin-bottom: 0;
      list-style:none;
      a {
        @extend .logo;
      }
    }
  }
}

And the CSS:

.navbar {
  background: #1b1b1b;
  overflow: hidden;
  max-height: 44px;
  -webkit-transition: max-height 0.5s;
  -moz-transition: max-height 0.5s;
  -ms-transition: max-height 0.5s;
  -o-transition: max-height 0.5s;
  transition: max-height 0.5s; }
  .navbar.open {
    max-height: 220px; }
  .navbar .navbar-inner .logo, .navbar .navbar-inner .nav a {
    display: block;
    padding: 9px 15px;
    font-weight: bold;
    color: #999999;
    margin-bottom: 4px; }
  .navbar .navbar-inner .nav {
    margin-bottom: 0; }

We set the maximum height of the open menu 5 x 44 = 220px. There are five stacked 
elements in nav and we know that they are each 44 px tall (I could tell by looking in 
my dev tools). By extension, the closed version, the version that has had the  
open class removed should have a max-height of 44 px. We need the overflow  
to be hidden so that the other elements aren't visible when the menu collapses  
to a smaller height.

You should also notice that the five different ways of creating the CSS3 transition 
animations were written with one line of SCSS (another mixin):

  @include transition(max-height .5s);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 29 ]

Things are looking really nice now! Play around with it and enjoy. This was a pretty 
intense section. The rest will be a tad simpler, I promise!

Next, let's move on to our Hero section. For now, we will simply have a background 
with some placeholder text and a button. But I will provide some tips and 
suggestions for making a slide show later in this section.

Hero
Let's keep the markup simple for now. Later, we will come back and make this a 
simple slideshow.

<div class="hero">
  <div class="container">
    <h1>Big Headline</h1>
    <p>YOLO vero scenester, semiotics next level flannel Austin 
shoreditch portland 3 wolf moon chillwave gentrify consequat tousled 
retro. Umami tonx ennui cliche delectus pinterest, in excepteur 
hashtag before they sold out.</p>
      <a href="./contact.html" class="btn btn-primary btn-
extlarge">Contact Me</a>
  </div>
</div>

The hero div acts as a container for some styles and content that we will add. 
For now, we will just stick to adding a headline, some text, and a button that will 
eventually take users to our contact page.

Here is what the SCSS should look like:

.hero {
  text-align: center;
  padding: 40px 20px;
  text-shadow: -1px 1px 0px #E0B78A;
  @include horizontal(#feb900, #cb790f);
  h1 {
    margin: 10px 0;
    font-size: 45px;
    font-weight: bold;
  }
  p {
    font-size: 18px;
    margin: 0 0 30px 0;
    font-weight: 200;
    line-height: 1.25;

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 30 ]

  }
  .btn {
    text-shadow: 1px 1px 0px #000000;
  }
}

…and the CSS:

.hero {
  text-align: center;
  padding: 40px 20px;
  text-shadow: -1px 1px 0px #e0b78a;
  background-color: #cb790f;
  background-image: -webkit-gradient(linear, 0 0, 100% 0, 
from(#feb900), to(#cb790f));
  background-image: -webkit-linear-gradient(left, #feb900, #cb790f);
  background-image: -moz-linear-gradient(left, #feb900, #cb790f);
  background-image: -ms-linear-gradient(left, #feb900, #cb790f);
  background-image: -o-linear-gradient(left, #feb900, #cb790f);
  background-image: linear-gradient(left, #feb900, #cb790f);
  background-repeat: repeat-x; }
  .hero h1 {
    margin: 10px 0;
    font-size: 45px;
    font-weight: bold; }
  .hero p {
    font-size: 18px;
    margin: 0 0 30px 0;
    font-weight: 200;
    line-height: 1.25; }
  .hero .btn {
    text-shadow: 1px 1px 0px black; }

Again, you can see the use of a mixin. We used the gradient mixin, @horizontal, to 
create eight lines of plain 'ol CSS. Convinced you should be using SASS yet?

Everything else is relatively straightforward. You may notice that I had to override 
the text-shadow of the button with a black colored shadow, since the peachy-colored 
shadow would have looked pretty terrible behind white text on a black button. All 
the other choices are just some basic styles for this area, which you can feel free to 
adjust according to your taste.

Now, let's move on to the trio of content panels that will go at the bottom.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 31 ]

Content panels
Now below the hero, place this example code:

<!--panels -->
<div class="full clearfix">
  <div class="grids grids-three clearfix">
    <div class="header header-link clearfix">
      <h2 class="h2">Heading</h2>
    </div>
    <div class="grid grid-1 clearfix">
      <p class="grid-a"><img src="img/410x230.png" alt=""></p>
      <h3 class="h2"><a href="#">Lorem ipsum dolor</a></h3>
      <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed 
do eiusmod tempor incididunt ut labore et dolore magna aliqua.</p>
    </div>
      <div class="grid grid-2 clearfix">
      <p class="grid-a"><img src="img/410x230.png" alt=""></p>
      <h3 class="h2"><a href="#">Lorem ipsum dolor</a></h3>
      <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed 
do eiusmod tempor incididunt ut labore et dolore magna aliqua.</p>
    </div>
    <div class="grid grid-3 clearfix">
      <p class="grid-a"><img src="img/410x230.png" alt=""></p>
      <h3 class="h2"><a href="#">Lorem ipsum dolor</a></h3>
      <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed 
do eiusmod tempor incididunt ut labore et dolore magna aliqua.</p>
    </div>
  </div><!-- / grids -->
</div>

Now, I have to confess at this juncture that all I did for this section was copy Andy's 
example from his panel upstart. These are darn useful. You can find his examples 
inside any of the preprocessor folders, but I got mine from ch2/before/320andup/
scss/320andup-panels/index.html.

Not only are these automagically (that's silly developer speak for something that 
happens automatically but seems mysterious and magical) laid out for us but, as you 
will soon see, they are already responsive without us having to make any effort. This 
is a huge payoff!

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 32 ]

The only change I want to make is to the background color of the div with a class of 
full. The bluish color doesn't go well with my orange theme. But if you look at the 
SCSS for the panel upstart (in upstarts/320andup-panels/_upstart.scss), you 
will notice that the color for the background is calculated from a $basecolor variable:

background-color : lighten($basecolor, 75%);

That means you need to assign the $basecolor variable to something. Let's just use 
one of the shades of orange from our hero gradient! Open up _variables.scss and 
change $basecolor to this:

$basecolor: rgb(203, 121, 15);

You will notice that our button in the hero changed color! Whoa! That's actually Ok, I 
planned for it. This is a powerful feature of tying your styles together with variables, 
but it can bite you if you don't pay attention.

Ok! Now things are looking really sharp! If you resize your browser, you can see the 
content panels change size and layout. We just need to make a footer, then we can 
add some responsive styles of our own for the things 320 and Up has not done for us.

Footer
Let's keep things simple again:

<footer>
  <div class="container">
    <h4>Let's build something awesome together.</h4>
    <p>Connect with me in any of the following ways</p>
    <ul class="social">
      <li><a class="icon-facebook-sign" href="http://faceylink.
html"></a></li>
      <li><a class="icon-twitter-sign" href="http://twitterlink.
html"></a></li>
      <li><a class="icon-envelope" href="mailto:something@yourmail.
com"></a></li>
    </ul>
    <div class="toplink">
      <a href="#">Top</a>
    </div>
  </div>
</footer>

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 33 ]

We will style it like so. First the SCSS:

footer {
  padding: 15px 0;
  text-align: center;
  background: #1b1b1b;
  color: $white;
  overflow: auto;
  p {
    padding: 9px 15px;
  }
  .social {
    list-style: none;
    margin: 0 auto;
    width: 280px;
    li{
      float: left;
      height: 80px;
      width: 80px;
      list-style: none;
      border-radius: 50%;
      background: #000;
      margin-right: 20px;
      a {
        font-size: 42px;
        padding-top: 24px;
        color: $lightgrey;
        &:visited {
          color: $grey;
          text-decoration: none;
        }
        &:hover{
          text-decoration: none;
        }
      }
    }
    li:last-child {
      margin-right: 0;
    }
  }
  .toplink{
    clear:both;
    a {
      display:inline-block;

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 34 ]

      padding:30px;
      color: #fff;
    }
  }
}

And the CSS:

footer {
  padding: 15px 0;
  text-align: center;
  background: #1b1b1b;
  color: white;
  overflow: auto; }
  footer p {
    padding: 9px 15px; }
  footer .social {
    list-style: none;
    margin: 0 auto;
    width: 280px; }
    footer .social li {
      float: left;
      height: 80px;
      width: 80px;
      list-style: none;
      border-radius: 50%;
      background: #000;
      margin-right: 20px; }
    footer .social li a {
      font-size: 42px;
      padding-top: 24px;
      color: #bfbfbf; }
    footer .social li a:visited {
        color: gray;
        text-decoration: none; }
    footer .social li a:hover {
        text-decoration: none; }
    footer .social li:last-child {
      margin-right: 0; }

Hopefully, you've gotten the hang of this now. But you can once again see the use  
of some variables as well as the ampersand sign in the SCSS to help write code faster.

Next, we handle what happens to the layout on larger screens.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 35 ]

Making our page responsive
The best way to see when you need to add new styles is to take your browser 
window from its narrowest and gradually drag it wider. When the design starts  
to look weird or broken, it's time to restyle it.

In our case, the main things we will need to restyle for larger screens are the 
navigation, the hero, and the footer. The content panels are already taken care  
of for us. Let's start with the navigation.

In the case of the navigation, we implemented the hide/show functionality to save 
valuable screen space, but at some point we don't need to make users click to reveal 
the menu. We can simply leave the navigation fully displayed at all times like a 
desktop site navigation that we are used to. In order to find the point where that 
layout breaks, we could drag our browser width, which could quickly get tedious. 
Also, in reality, responsive websites aren't for wackos that resize their browsers 
spontaneously and repeatedly, like yours truly, but for devices of different sizes. 
Luckily, 320 and Up has a useful tool in its toolbox to help out.

If you open up an HTML file called responsive.html in the directory you're 
working in (to remind you it's ch2/before/320andup/responsive.html), it 
should just automatically load your index.html file. Now, by scrolling left and 
right, you can see your layout in five good layout breakpoints (not to be confused 
with breakpoints used in debugging code). Of course, there will be exceptions, but 
these breakpoints are a real time-saving place to start as they tend to hit the range of 
devices currently available. I encourage you to critique and question, but for now, 
let's take advantage of them as they are paired up with 320 and Up and will speed 
up development that is going to support a good design in almost all cases. If you 
open this page through your computer's filesystem, it won't load the pages. See my 
note earlier in the chapter to find a good way to open up this page. But to restate, my 
personal favorite for something this simple is the Python simple HTTP server.

Ok, so when you successfully get this page to load, what do you see? You should 
notice that the design works really well on the mobile and small tablet layouts. 
Based on the minimal amount of placeholder content I have in here, it doesn't look 
too sparse nor does it look too cramped. And as a bonus, those neat content panels 
expand to fill the extra real estate. The framework facilitates this via @media queries. 
More on this in a minute.

That said, what do you think about the tablet — portrait layout? It usually works, 
but we have more room in that hero area now. That doesn't mean we have to add 
more content but we can probably make that text a little bigger to fill it out. To heck 
with that, let's make it really bold and get people's attention. The nice thing is that 
320 and Up already has all the structure in place to make it easy to change the size. 
First let's look at the code, then I will explain what goes on under the hood.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 36 ]

If you are using SASS, this is super easy. Open the _768.sass or _768.scss file and 
add this code:

.hero {
  h1 {
    font-size: 108px;
  }
  p{
    font-size: 40px;
  }
}

or in CSS, find the point in your file that says:

@media only screen and (min-width: 768px) 

and within the curly braces add this code:

  .hero h1 {
    font-size: 108px; }
  .hero p, .hero footer a, footer .hero a {
    font-size: 40px; }

So, if you are new to SASS or @media queries, I will take a moment to help you 
understand what is happening here. First, I will explain the @media query. Quite 
simply, in this case all it does is tell the browser that once the screen is a minimum 
width of 768 px, the contained styles should be applied. You can set other 
dimensions and other conditions as well.

As for the magic in SASS that allows us to organize these styles in separate files, 
there is a similar syntax that is only in the .sass or .scss file (not the .css file) and 
is, in essence, an instruction to the preprocessor to pull in separate files. You may 
have noticed that the file you edited (and a bunch of others) has an underscore at 
the beginning of the name. That indicates that it is a partial file. If you look at the 
320andup-sass.sass file or the corresponding file for the language you chose, you 
will notice that inside all the @media queries, there are @import statements. For the 
file we just edited, there is an @import 768 statement inside the same exact @media 
query you see in the plain CSS file:

// 768px
@media only screen and (min-width: 768px) {
@import "768";
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 37 ]

When it gets to this point in the file, it tells the SASS preprocessor to go find the file 
with the name _768.sass and render whatever code is there into this place. So, not 
exactly rocket science, but a lot of the busy work of setting all this up has been taken 
care of for you.

Ok, now back to getting this design to respond to this tablet size. The other thing you 
will notice is that we probably don't need to have the navigation elements hidden 
anymore. If we can keep the navigation convenient and show a lot of content as  
well, then we've accomplished some very important missions! So let's go back to  
that _786.sass file and add this above our previous chunk of code:

.menu-button {
  display: none;
}
.navbar {
  position: fixed;
  width: 100%;
  .logo {
    float: right
  }

  .nav li {
    float: left;
  }
}

You'll notice this structure mirrors the structure of our original site.sass file. This 
is just a good practice for maintenance reasons as well as making sure that the styles 
actually override the other ones.

Refresh your screen if necessary and now you'll see that the navigation elements 
extend from left to right. This is probably what you are used to seeing on a regular 
old desktop website. And there was much rejoicing. There is the possibility of 
moving this style into the _480 file layout too, but it looks a bit crowded to my eye. 
That said, if you had less navigation and a small logo (or no logo), you might want  
to apply that style at 480 px instead.

There is one more neat little tweak that we should make at this point. All the content 
in the navigation and hero is sitting closer to the edge of the viewport than it needs 
to. We can definitely add some breathing space. In the markup, we have a nice 
utility class that we can use for this purpose (it's been something of a convention that 
frontend developers have been using for a while now). Add this code in the _768 file 
of your choosing, above all the previous code we've written so far:

.container {
  width: 90%;
  margin: 0 auto;
}

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 38 ]

This allows us to center these containers within the other elements that we want to 
visually fill the width of the screen, which makes our app have a huge visual impact 
without the content sprawling too much. This sizing and margin is dynamic and 
changes in a fluid manner as the browser gets wider in proportion to the content 
panels below. We could set explicit widths at various visual breakpoints; however, 
we wouldn't be taking advantage of the framework then. I would argue that fixed 
widths are a passing paradigm.

Let me explain what I mean by that. In the earlier days of web design, designers 
made their pages look more like… well, pages. But web design currently has an 
expanded idea that the page should be more flexible. I think this is a good thing, 
don't you? Just as an example, users with large displays don't get a narrow band  
of content in the middle of their page.

Along those lines, did you notice another convenience of the way 320 and Up is 
designed? Once we applied the styles for 768, those styles are applied to the larger 
screens too. Neat! Less code means faster and better work, and easier maintenance. 
It also means less CSS for a browser to download. That is the UI trifecta: good user 
experience, good performance, and maintainability.

Now, another thing you'll notice is that our footer is fine. I must admit that I've taken 
the easy way out with that, but the approach I've used here is still useful for content 
of this type. When there is little content for an area of the page, such as a footer, it 
pays to just tastefully center-align all the content. When done properly, it is easy to 
read and doesn't distract from what is clearly the more important content up above 
on the page. And if the footer has something really important, you should consider 
moving it up into the body of your page!

Next, let's revisit, the Hero area and discuss adding images in there and use some 
simple code to cycle through them.

Slider
So, before we get into making a slideshow, it will be useful to see how well 320 and 
Up facilitates making images responsive. If you look in the supplied code in the 
index.html file, you will see a block of code just below the hero markup for slider 
markup. I have left comments in there to make it easy to find.

For now, because I want you to see something already put in place for you in your 
own file, only add the following markup:

<div class="slider">
  <div class="container">

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 39 ]

    <img src="img/placeholder.png"/>
  </div>
</div>

Use this markup in place of the hero markup (either delete the hero stuff or comment 
it out; it's totally up to you).

Next, add this small bit of CSS to the site.css file you are working in (it will be 
identical in all file types):

.slider {
  text-align: center;
}

Refresh the page and play around with the width of your browser. You should see 
the image change without ever getting cropped. This is an elegant solution in that 
one image will work for all layouts. It is not a solution for all cases (and there are a 
lot of discussions right now about how to make images more responsive to screen 
size). But here is the situation it is good for: I have a small number of images that 
aren't too large and I don't need to have them cropped differently for different screen 
sizes. This situation is actually pretty common, so as long as you can get your images 
to be lightweight, it works well.

Now, let's add a little bit more complexity without recreating the wheel. For now, 
we will just add two more images and I will supply some simple JavaScript to cycle 
through and have the images fade-in.

Let's change the markup so that we can get ready for more JS and CSS:

<div class="slider">
  <div class="container">
    <div class="slide active"><img src="img/placeholder.png"/></div>
    <div class="slide"><img src="img/placeholder-2.png"/></div>
    <div class="slide"><img src="img/placeholder-3.png"/></div>
  </div>
</div>

Not a ton of code, but let's walk through this to understand it in depth. We need 
to wrap the images in <div> tags now (for other purposes, you could always put 
them in other block elements; however, right now this simple markup is totally 
appropriate for our purpose). These div containers allow us to assign classes and 
do block level styling to anything within a slide and not just images. For now, we 
are only placing a single image in these slides, but if we wanted to add captions or 
buttons or something that would become impractical. For the slideshow to display 
flexibly, we just need these wrappers around everything.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 40 ]

Now, let's look at some CSS to get this to display properly:

.slider {
  text-align: center;
  position: relative;
  .container {
    position: relative;
    .slide{
      position: relative;
      display: none;
      &.active{
        display: block;
      }
    }
  }
}

and the compiled CSS:

.slider {
  text-align: center;
  position: relative; }
  .slider .container {
    position: relative; }
    .slider .container .slide {
      position: relative;
      display: none; }
      .slider .container .slide.active {
        display: block; }

This markup allows us to make sure that the first image is the only one visible 
without even running any JavaScript. The slide class by default is not visible and it 
only becomes visible when it gets the class active added to it. This not only works 
at the code level, but also reads nicely. You read the code and it says class="active 
slide" and you have a pretty good idea what that means.

To move on, let's add some JS to see if we can get a simple animation going. This will 
not be a fancy animation. Just to warn you; if you want something with cool controls 
and other bells and whistles, that is beyond the scope of this book. If you want a neat 
responsive slideshow, I recommend either the carousel included in Twitter Bootstrap 
or any other responsive slideshow. This sample code I am sharing below will simply 
cycle through some images.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 41 ]

Add this inside your document ready function:

  var changeSlide = function(){
    //query the DOM for an active slide
    var $active = $('.slider .active');
    //if there are no active slides set the last one as active
    if ( $active.length === 0 ) {
      $active = $('.slide').last();
    }
//get the next slide after the active one, if there is no next one, 
set next as the first slide
    var $next =  $active.next().length ? $active.next() : $('.slide').
first();
    //set classes on active and next slides so we can apply styles 
appropriately
    $active.addClass('last-active');
    $next.addClass('active');
    $active.removeClass('active last-active');
  };
//this will kick off the slideshow code above
  $(function() {
    setInterval( changeSlide, 5000 );
  });

This code was adapted from http://jonraasch.com/blog/a-simple-jquery-
slideshow to work with our 320 and Up layout. It will cycle through your images 
and append the active class to each one while removing it from the previous one. 
Then once it gets to the last one, it assigns it to the first one. Again, a very simple 
approach since the focus of this book is 320 and Up. If you want to use a slideshow, I 
suggest not reinventing the wheel since there are a lot of great components out there. 
If you are looking to choose a good component, look for one that is either designed 
to be responsive or at least does not interfere with it.. Another criterion for me is that 
it uses CSS3 animations with JS polyfills. CSS3 animations are likely to (though not 
in all cases) run smoother on mobiles than JS animations.

One limitation of the image we have used is that for really large screens, the image 
kind of gets swallowed up in all the negative space on the left and right of the slide. 
If this bothers you and is keeping your site from looking as good as you think it 
should, there are two strategies at your disposal: include larger images or put a  
full-width background in that area. I prefer the latter because a proportionally larger 
image is going to eat up the top of our layout and would also mean larger files that 
could definitely harm performance. 

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Home Page

[ 42 ]

Remember that the ultimate goal here is to get content to the visitors on our site! The 
latter strategy requires some planning though. Either your images need to have some 
transparency around the edges or the background of all your images should match 
the background you use in your CSS or the slider area. I am going to show you a 
simple example of matching the background.

I happen to know that the sample images I created have a vertical gradient that 
goes from #383234 to #231F20. So now all I need to do is make a background that 
matches that. Using the SCSS mixin provided in 320 and Up is ridiculously easy. I 
just add this to my .slider styles:

  @include vertical(#383234, #231f20);

and that is rendered to CSS as:

  background-image: -webkit-gradient(linear, 0 0, 0 100%, 
from(#383234), to(#231f20));
  background-image: -webkit-linear-gradient(top, #383234, #231f20);
  background-color: #231f20;
  background-image: -moz-linear-gradient(top, #383234, #231f20);
  background-image: -ms-linear-gradient(top, #383234, #231f20);
  background-image: -o-linear-gradient(top, #383234, #231f20);
  background-image: linear-gradient(top, #383234, #231f20);

The limitation of this approach is that devices that don't support gradients will get 
a solid color. If this is unacceptable to you, then it's time to go back to the drawing 
table and come up with a design that will work in all scenarios! In most cases, I have 
worked with designers who either throw their hands up in this situation or find 
ways to make their design work in all situations. If you ask me, it's a moving target 
and it's best to focus your energies on a design that you know will look spot-on to  
80 percent of your audience and still decent to the remainder of your site's viewers.

Ok! Now you have the fundamentals for a home page that will display optimally on 
virtually any device! This was a lot of work, but now that we have laid the ground 
work, the other pages will go fast.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 43 ]

Summary
In this chapter, we created navigation that changes based on screen size so that users 
of small screens can expand or collapse it and users of large screens get the entire 
navigation menu. We even used CSS to create the icon that indicates a collapsible 
menu. We made a responsive hero area with a big call to action, leveraging 
mixins and variables to quickly get our design to come together with colors that 
complement one another. We used the panel Upstart to get the triad of content 
panels at the bottom of our page and we used the supplied icons and CSS framework 
to include social media and contact info icons in the footer. And best of all, this 
happened really fast. When you get the hang of it, you can pull a page like this 
together within an hour. Now let's move on to the next chapter!

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page
In the previous chapter, we did a lot of work and we built quite a base for the rest of 
our portfolio site. With the knowledge we now have and the small amount of code 
we wrote on top of the 320 and Up framework, we can really start to move fast. In 
this chapter, we are going to do just that. We are going to build a gallery of panels 
that will be stacked for narrow screens and tiled for wide screens. To do this, we 
are going to use the same basic approach that we did in the previous chapter for the 
triad of content panels at the bottom of our page.

Creating the wireframe
Before we jump into the code, let's take a look at some wireframes. The following 
screenshot shows how our screen should look on a small screen:

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 46 ]

As the browser gets wider, we'd like those images to get bigger and change the 
layout from stacking to tiling for better use of the screen space. The following 
screenshot is the basic layout of a screen over 992 px wide:

There are a lot of visual breakpoints between the two that I have created above that 
320 and Up facilitates. The only thing to keep in mind with 320 and Up is how to 
keep the rest of your page consistent with it. As we go along here, let's analyze what 
the layout is doing and get the rest of our page to play nice with it by either using 
styles that already exist in 320 and Up or creating our own.

The way I would create a Gallery page for myself is with some kind of hero at 
the top of the page, but not a slideshow. I feel it's important to orient users with a 
simple, bold statement at the top of most pages for this kind of site. The main reason 
is that you cannot count on the user coming to your Home page first, so you need 
to establish quite a bit of background about your website on every page. I guess I 
would compare this strategy to the one that writers of serial television use: you have 
to assume that the viewer may need a little background information in every episode 
or, in this case, page.

So, let's start the page off with a hero that is not quite as tall, but still has really bold 
text—a heading and a short sentence.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 47 ]

To get started, you can grab the gallery.html file from ch3/before/320andup/
gallery.html. This file will have all the items we can re-use from our Home page, 
for example, the code in the head of the file, the navigation, the footer, and so on. 
Take a few moments to look at it and see what we are re-using for every page as 
we move forward. Go ahead and open this page in a browser to see what you have 
to start with. You should see the navigation part butted right up against the footer. 
Don't worry, we will fill the space in between them soon.

Before we move on, I just want to quickly outline what code we are keeping from the 
first page we made and why. Of course, we are keeping everything from the top of 
the file to the closing </head> tag. We are also re-using the code that begins at the 
footer and continues to the bottom of the file. This is the entire code that we need on 
every page to do essential work across devices and browsers as well as to include 
our styles, favicons, and JavaScript libraries. We also have code that will be the same 
on every page, such as the markup for navigation and the footer. In other words, 
we are repeating this code on every single page we are building. This is true but if, 
for example, you were using a framework such as Django or Rails, or some kind of 
templating language in another framework, you would separate the code that would 
be repeated on every page out to its own file so it could be re-used and shared in 
other files. This would be a great approach to solve the problem of requiring this 
code to appear on every page.

However, in order for me to make this book platform-agnostic, I have simply copied 
this code over from page to page as we progress. I really do not recommend making 
a site this way. Repeating the same code in different places is just an invitation to 
make a horrible mistake at some point (here's hoping I haven't made one).

Let me explain some of the risks of just manually copying this code over from page 
to page. For example, if you decide to make a change to the navigation part on one 
page, you have to remember to make the same change on every page and also make 
sure you execute it with precision. If you've been programming for a while, you will 
recognize this principle as Don't Repeat Yourself (DRY). It is a bedrock principle of 
writing code. You should follow it. This principle is a major justification as to why I 
recommended using Sass (or LESS) in the previous chapter and why you should be 
using a framework like 320 and Up!

Ok, enough of me pontificating.

Other aspects of this page would also do well to be re-used in your framework of 
choice. The header, which contains the navigation, and the footer are highly likely 
to be identical on every page, so I would make these components re-usable, too. The 
last thing I will point out is that you should also re-use the JavaScript at the bottom. 
Many times, developers use strategies to make the inclusion of CSS and JavaScript 
dynamic, based on the page needs, but for our simple site that is unnecessary.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 48 ]

Now that we've got that business taken care of, let's move on to taking care of the 
content that will be unique to this page.

The slim hero
Now, we need a hero at the top of this page, but we don't want to distract too much 
from the gallery tiles. So, we don't want a big, splashy image. Instead we want some 
bold content that quickly sums up what is happening on the page and meets the 
following requirements (that I also mentioned previously); Assume that the visitor 
may have landed on this page without ever seeing the rest of the site while not 
insulting the intelligence of a person who has already been browsing the site.

What you actually say is up to you, of course. The real objective is to understand the 
strategy of the content and how it relates to our layout.

Here is a mock-up of what we are shooting for in a 320 px-wide device:

Here is how it should look on a desktop browser:

The major differences between the two mockups are as follows:

•	 The 320 px layout will need smaller font sizes than the wider layout
•	 The 320 px layout has the text aligned to the center whereas the wider layout 

has the text aligned left

This isn't mandatory or anything; it's just a design decision I have made that we can 
also support with the responsive design, as luck would have it.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 49 ]

Now, let's write some code for this. Place the following markup just below the 
closing </header> tag. Here is what the markup needs to look like:

<div class="hero">
  <div class="container">
    <h1>Gallery of My Stuff</h1>
    <p>There is almost all excellent stuff here. The rest is just  
      really good.</p>
  </div>
</div>

Now, the cool thing is, if you have everything in its right place, your page will look 
close to how we want it to because we are re-using styles from the Home page. To 
be precise, it only looks right when we look at it on a 320 px wide screen. Take a 
moment to look at the Home page and this new Gallery page and get your head 
around how the styles are being re-used. You may notice one thing, now that our 
<h1> tag has text that goes over two lines, our line-height is too high. Let's tighten 
that up a bit. Edit the .hero h1 style by adding the following line of code:

line-height: 1em;

Now, refresh the page and see how that keeps the headline nice and compact. It's a 
cozy look, don't you think?

Ok, so that was super easy! This just works.

Here's why that works: You'll notice I set the height to 1em. An em is a unit of 
measurement different from pixels. Pixels set an explicit measurement and ems set a 
relative measurement. Why set a relative height? To make future changes easier. An 
em is equal to whatever the current font size is. So, in this case the line-height ends 
up being equal to the font size. This is the desired outcome, since we want there to be 
little to no extra white space generated by a line-height greater than the font size.

So, why bother to be so abstract? You don't always have to be but I like to use  
ems in places like this because it makes changing the font size less troublesome.  
If I come back later and need to adjust the font size, I won't need to also adjust the 
line-height to maintain the current styling effect. Ems will continue to render a 
line-height that is the same as the font size.

Next, let's look at how all this works for the desktop view. Using your preferred 
method (the responsive .html page or just resizing your browser), go ahead and  
take a look at the widest width we are styling for, 1382 px wide.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 50 ]

The trouble is that there are some fine points that are off by just a little bit. One thing 
you will notice is that the font size on the desktop layout is just a tad too big to keep 
the layout slim as we want. So, we need to override some of the styles we re-used 
from the Home page.

There are two ways to accomplish this. One way is to assign a class somewhere 
above the page elements that we want to style differently and then have some new 
style descend from that class that will override the existing class. For example, 
currently, the <h1> element in the hero gets this style:

.hero h1{
  font-size: 108px;
}

So, we could just add a new class to our hero as follows:

<div class="hero slimmer">

Then, somewhere further down on the stylesheet, have a style that has the  
following properties:

.hero.slimmer  h1{
  font-size: 60px;
  text-align: left:
}

Then, this style would override the .hero styles applied above it. However, this 
is not ideal; now that we have two kinds of hero, the non-slim one is semantically 
vague. Instead, we can add a class to both kinds of hero to make it clear that the 
styles apply to a large version of a hero.

First, let's go back and change our Home page HTML as follows:

<div class="hero jumbo">
  <div class="container">
  <h1>Big Headline</h1>
  <p>YOLO vero scenester, semiotics next level flannel Austin  
    shoreditch portland 3 wolf moon chillwave gentrify consequat  
      tousled retro.</p>
  <a href="./contact.html" class="btn btn-primary btn- 
    extlarge">Contact Me</a>
  </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 51 ]

Notice the addition of the class jumbo. Now, assuming you are using SCSS, we need 
to edit our stylesheet for screens with dimensions 768 px and above to match it. In 
order to do that, open up the ch3/before/320andup/scss/_76s.scss file. For 
future reference, I will just ask you to open up the file by its name rather than stating 
the whole path. So, for this file, I will ask you to open up the 768 file. When we need 
to edit styles that apply to layouts 992 px and wider; I will ask you to open up your 
992 file, and so on. With that established, let's continue with adding some code to the 
768 file. In this file, our SCSS used to read as follows:

.hero {
  h1 {
    font-size: 108px;
  }
  p{
    font-size: 40px;
  }
}

Now we will replace .hero with .jumbo.

So now, the whole section of SCSS file should look like the following code snippet 
(with CSS to follow):

.jumbo {
  h1 {
    font-size: 108px;
  }
  p{
    font-size: 40px;
  }
}

Then, add the following CSS in the previous code snippet:

@media only screen and (min-width: 768px) {

  .jumbo h1 {
    font-size: 108px; }
  .jumbo p {
    font-size: 40px; } }

So, the cool thing is that .jumbo h1 and .jumbo p are much more re-usable now that 
they are decoupled from .hero, which has a pretty specific application.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 52 ]

Now we need to work on the styles for our Gallery page. Let's make the HTML code 
look as follows:

<div class="hero subhead">
  <div class="container">
    <h1>Gallery of My Stuff</h1>
    <p>There is almost all excellent stuff here. The rest is just  
      really good.</p>
  </div>
</div>

We don't assign a subhead style for 320 styles, but let's add it for styles that need text 
to use up the available space better. The first stop is the 480 px visual breakpoint. 
Take a look at this layout at 480 px; we can get away with pumping the font size  
up a bit. It seems like a small change but let's do this not only because we can, but 
because next year there will almost certainly be a tablet that is 520 px wide and your 
layout is going to be more likely to hold up at this resolution now that you took the 
time to do this!

If you are using SCSS (or another preprocessor), add the following code to your 
480px file:

.subhead {
h1 {
    font-size: 48px;
  }
  p{
    font-size: 24px;
  }
}

This will render CSS that is once again nested inside the query @media only screen 
and (min. width: 480px) and looks like this:

.subhead h1 {
  font-size: 60px; }
.subhead p {
  font-size: 24px; }

We are keeping the text centered at this point, since the rest of the layout is going to 
be centered too. More on this once we add the content panels.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 53 ]

Let's move on to the next visual breakpoint, that is, 600 px. The heading at 48px 
looks a bit puny. Let's go ahead and pump it all the way up to 60px. Add this  
to your 600px file:

.subhead {
  h1 {
    font-size: 60px;
  }
}

This previous code renders the following CSS:

.subhead h1 {
  font-size: 60px; }

Now, moving on to the 768 px visual breakpoint—how does it look to you? I think 
this font size works here and up to the other breakpoints but, if you are so inclined, 
make changes to the larger sizes too. To a certain extent, it depends on how much 
you want to tailor the font size to your content or how much you want some safer, 
more generic styles to work well with the dynamic content. My goal with these 
layouts is to make a layout that is likely to work with a wide range of content.

Now, we have the fonts in the subhead hero looking good at all sizes! Take a 
moment to re-size your browser and watch how everything changes and uses the 
existing screen space. One thing you may notice is how the space between the text 
and the edge of the viewing area gets dramatically narrower, up to somewhere 
between 600 px and 786 px. The reason this happens, you might recall, is because we 
don't style the div tag with the container class until we hit the 768px breakpoint. 
We will address that in a moment, but let's see how it plays with the content panels 
before we mess with it too much.

At this point, I should mention that my own approach to building responsive 
layouts, whether working alone or with a team, is always recursive like this. I try  
to build one component of a page until I feel like it is either exactly what I want 
or I find that I have questions about how it will play with the rest of the content 
on the page; this is one such juncture for me. While working with a team, I might 
start to code out this page and get feedback from a designer or another developer, 
then tweak it until we are all satisfied enough to ship the code or show the client, 
whatever the case may be. Since, we are making a site for ourselves we are just 
iterating alone (you and me together).

So, on that note, we are going to add our content panels, but then we are going to 
need to loop back around and make sure our subhead hero looks Ok.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 54 ]

Content panels
You may remember that, as with the Home page, each content panel will have an 
image, a heading, and a short blurb.

If I were doing this to show off my portfolio of work on websites, I would use 
screen grabs of each project I want to highlight and work on writing fairly short 
headings and blurbs for each. By default 320 and Up has each heading as a link to a 
corresponding page but you could link each panel, instead, if you are worried that 
people won't click on it. Later, we will make an example page to demonstrate where 
a user might land if they were to click the heading.

For this example page, we will continue to use the placeholder image and 
Lorem Ipsum, but feel free to make actual, meaningful content if you have some 
ready. Additionally, if you are hooking these layouts up to some kind of content 
management system or blog, you should think through how you will have to change 
your code for those kinds of approaches. For example, you may be building this 
layout via a loop in a template that relies on the number of gallery objects you  
have created.

For the panels themselves, all you need to do is use the same ones we put on the 
Home page; but instead of only three, you can add as many as you want to show  
off your awesome work.

Here is the HTML code you will need to make the first set of three panels:

<div class="full clearfix">
  <div class="grids grids-three clearfix">
    <div class="header header-link clearfix">
      <h2 class="h2">Heading</h2>
    </div>
    <div class="grid grid-1 clearfix">

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 55 ]

      <p class="grid-a"><img src="img/410x230.png" alt=""></p>
      <h3 class="h2"><a href="#">Lorem ipsum dolor</a></h3>
      <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,  
        sed do eiusmod tempor incididunt ut labore et dolore magna  
          aliqua.</p>
    </div>
    <div class="grid grid-2 clearfix">
      <p class="grid-a"><img src="img/410x230.png" alt=""></p>
      <h3 class="h2"><a href="#">Lorem ipsum dolor</a></h3>
      <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,  
        sed do eiusmod tempor incididunt ut labore et dolore magna  
          aliqua.</p>
    </div>
    <div class="grid grid-3 clearfix">
      <p class="grid-a"><img src="img/410x230.png" alt=""></p>
      <h3 class="h2"><a href="#">Lorem ipsum dolor</a></h3>
      <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,  
        sed do eiusmod tempor incididunt ut labore et dolore magna  
          aliqua.</p>
    </div>
  </div><!-- / grids -->
</div>

Now, you just have to save and refresh your page and you will see it all work! 
Ridiculously efficient, isn't it? Now, of course, for your own content, it is critical that 
you use 410 x 230 pixel-images that you will crop with either image-editing software 
or a nifty editing tool in a CMS or blog. You will notice that there is an <h2> heading 
above this group of three panels. I would only include this if you have some kind 
of sensible groupings that will benefit from being titled. The layout will work fine 
with or without this particular heading. I would not recommend removing the <h3> 
headings because, along with the images, they will really help viewers scan the page 
and find information quickly.

So, at this point, you can either use the placeholder images in the code sample to 
build this page or start including your own content. If you are doing it statically, 
as opposed to building the page with a loop in some kind of template, you will just 
need to keep copying-and-pasting these panels.

Experiment a bit; however, I would like to give you just some quick thoughts about 
how these panels will work on the page. One thing to consider is how one gets the 
panels to lay out without being separated by headings or additional whitespace. All 
you really need to do is keep repeating the grid-1, grid-2, and grid-3 blocks as 
needed (with the entire markup that is inside them, of course). I have also shared this 
in the example code.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 56 ]

Another thing to consider is what to do if you don't have panels in exact multiples of 
three. That is Ok, too! It just works. I have shared this in the example code as well. I 
stopped at just five blocks and it lays out just as you'd want it to.

There are only two problems left to solve with regard to this page. The first problem, 
you may notice, is that, in my initial wireframe, I wanted to left-align the text for 
larger layouts. Somewhat arbitrarily, I have decided that we will do that for all 
layouts above 600 px. Go into your 600px file and add the following code:

.subhead {
  text-align: left;
  h1 {
    font-size: 60px;
  }
}

Or, add the following code in the 600px @media query in your CSS:

.subhead {
  text-align: left; }
.subhead h1 {
  font-size: 60px; }

Now, the text is only centered for smaller devices and left-aligned for tablets and 
larger devices.

The second problem you might catch as you resize your browser between 600 px 
and 768 px. Hopefully, you've noticed that the text in the hero ends up being a lot 
closer to the edge of the viewing area than the rest of the layout. You may recall 
that we have all the content inside the content container, but that class doesn't get 
styled until the 768px @media query fires. Perhaps we should try to apply the styles 
within 768 @media query to 600px-width screens instead and see what this does 
to all layouts at all breakpoints above 600px. So, right now, go ahead and cut that 
style from the 768px file and paste it in the 600px file. Or, if you are using plain CSS, 
you will need to remove this code from the 768px @media query and paste into the 
600px one.

Now, once you've done that, go back and play around with both the Home and 
Gallery pages by resizing your browser. The heading in the hero now stays nicely 
aligned with the panels beneath it. This change doesn't seem to adversely affect the 
Home page hero or the footer, so it looks like we are good to go.

To a certain extent, this is how I develop for responsive websites, I see what breaks 
and try to fix it, in a generic, elegant way where possible, without putting undue 
constraints on the content.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 57 ]

Now, the last big task we have for this chapter is to make the page that the users will 
land on when they click on the link for the corresponding content panel. We will call 
this task the gallery detail.

The gallery detail
So, let's have a look at the content we want on this page and how to strategize the 
layouts for different devices.

The main things, I think, most people want to see in a portfolio of any kind are a few 
key images and some lengthier, detailed text describing images.

Here is the layout we will need for mobile screens:

The smaller squares, shown in the screenshot, will be the thumbnails that users can 
touch or click on to show the larger image above the smaller images on the page. The 
first thumbnail will be the default image that will be displayed when the Gallery 
page loads. We will also highlight the thumbnail that is currently active, with a 
border. In order to do this, we will need to make both full-sized and thumbnail-
sized images of all the images. The description for each image will be below the 
thumbnails (and that's completely appropriate in my book). If your images are 
compelling enough, people will scroll down to read it.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 58 ]

Now, let's look at the opposite end of the spectrum—the desktop view. We will want 
to orient things differently now that we have more screen real estate:

With the added space, we can put the text that you worked so hard to write right 
next to the big image below which the thumbnails are placed. Let's assume that, as 
with the other responsive layouts, these two layouts will cover all the breakpoints  
as long as we size key components of the page in percentages.

As before, let's start with the layout for mobile screens first. The HTML structure of 
the page should be fairly straightforward. We will need to put all the images on the 
page, hiding all but the first featured image, and then we will add our text. Again, 
let's not think too hard about what the desktop page will look like; let's just get what 
the mobile layout needs as simply as possible.

As before, you will need to make sure you re-use the basic structure of our  
page—the header, navigation, and footer. We will be inserting new content below 
the header after the closing </header> tag (to be precise). Please make sure to 
carefully investigate where the following code is going in the example code at 
ch3/320andup/gallery-item.html so you can follow along.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 59 ]

Here is what the HTML code we will add on the gallery item page will look like:

<header class="page-header">
  <h1>This is a Title</h1>
  <h2>Subtitle with more words</h2>
</header>
<div class="gallery-showcase">
  <div class="gallery-image-area">
    <ul class="featured-images">
      <li class="featured-image-item active"><img  
        src="img/gallery_image-1.png" alt="image 1" /></li>
      <li class="featured-image-item"><img src="img/gallery_image- 
        2.png" alt="image 2" /></li>
      <li class="featured-image-item"><img src="img/gallery_image- 
        3.png" alt="image 3" /></li>
    </ul>
    <ul class="thumbnail-images">
      <li class="thumbnail actice"><img src="img/thumb-1.png"  
        alt="thumb 1" /></li>
      <li class="thumbnail"><img src="img/thumb-2.png" alt="thumb  
        2" /></li>
      <li class="thumbnail"><img src="img/thumb-3.png" alt="thumb  
        3" /></li>
    </ul>
  </div>
</div>
<div class="gallery-description">
  <p>some text here…</p>
  <p>even more text if you want…</p>
</div>

You should notice in the basic structure of the code that we have an outer container 
that holds all our main images and all our thumbnail images. This container has 
the class gallery-showcase. Inside this class, there are containers for the big 
images and the smaller thumbnail images—featured-images and thumbnail-
images, respectively—that users will click on or touch to see the corresponding 
larger images. The inner gallery-image-area container is there to help out with 
layout, mostly. As we did with the slideshow, we will load all the images onto the 
page while hiding the ones that aren't active using CSS. Later, we will hook up 
some simple, elegant JS to make it all interactive. The last bit, you will notice in the 
previous code, is the gallery-description container that will hold the text you 
write about the portfolio item.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 60 ]

I have included placeholder images for you and they are provided in the shared 
code. The size of the big images is 550 x 550 pixels and that of the thumbnails is 80 x 
80 pixels. If you want to use these layouts for your own purposes without modifying 
the layout, you will need to edit some images to those sizes.

If you are feeling impatient, as I often do, you have already refreshed this page  
and can see that it is not ready for primetime. We have some work to do. Let's start 
off by hiding the large gallery images that won't be seen when the page loads. Much 
as we did for our hero slideshow, we will assign a class to the first image; this will 
make it the only visible image on the page. Go back to the HTML file we just made 
and notice that we have the class active assigned to the first large image and the 
first thumbnail.

Ok, let's get to styling!

We are going to add some styles to the page file; for me that is the page.scss file. 
But, if you are just directly editing CSS, you will need to just add these styles into 
your CSS file. The way they are rendered by the SCSS preprocessor includes these 
styles below the table styles in the code, fairly far down in the file. I recommend 
following this so that these styles are lower in the stylesheet than the more general, 
sitewide styles. I tend to think of the site and page files a little differently from Andy 
(no offense). I think of the site styles as elements on the page that will appear across 
the site on every (or nearly every) page. Then, I think of the page styles as being 
specific to particular pages, with less likelihood of being re-used on another page.

First, let's get the headings how we want them. You may notice that we have a 
second <header> on this page (yes that is allowed). We want to add some page-
specific styles to the headings within the page. First, we need to get the text below 
the image to align to the center, so all we need in SCSS or CSS is the following code 
added to the appropriate spot (see the code samples that can be downloaded from 
the Packt Publishing website if you're not sure):

.page-header {
  text-align: center;
  margin: 12px 0;
}

Then, we need to apply styles for the fonts:

.page-header {
  text-align: center;
  margin: 12px 0;
  h1 {
    font-size: 30px;
    margin: 0;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 61 ]

  }
  h2{
    font-size: 18px;
  }
}

The previous code is rendered to this CSS:

.page-header {
  text-align: center;
  margin: 12px 0; }
  .page-header h1 {
    font-size: 30px;
    margin: 0; }
  .page-header h2 {
    font-size: 18px; }

Now, let's apply styles to hide all the big gallery images that aren't active. To do that, 
write the following SCSS code:

.gallery-image-area {
  .featured-image-item {
    display: none;
    &.active {
      display: block;
    }
  }
}

The previous code renders the following CSS:

.gallery-image-area .featured-image-item {
  display: none; }
  .gallery-image-area .featured-image-item.active {
    display: block; }

Refresh the page and now you should only see the first big gallery image. Progress!

You should be looking at our layout at 320 px (remember that this is mobile first) and 
will see that, so far, everything is stacked—absolutely everything. The only thing 
that we, for sure, don't want to stack is the thumbnail images. So, let's get those laid 
out correctly. Basically, all we need to do is get the <li>s tags to float left and add 
some space and we will have most of what we need.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 62 ]

Add the following code to your stylesheet:

ul {
  list-style: none;
}
.thumbnail {
  float: left;
  margin: 0 20px 20px 0;
}

In this code, we first removed the browser's default bullets for lists (but only for lists 
inside the gallery-image-container block) and then we made the thumbnails float 
left. This way, you could potentially have as many thumbnails as you want, but I'd 
keep it down to about three to keep things simple for your site's visitors. The trouble, 
though, is that, if you have three in there as I do with the shared code, you will trick 
yourself into thinking that this layout works just fine. If you have three thumbnails 
in there, temporarily remove the entire HTML code for the third one so that you only 
have two left.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 63 ]

See what happens? The text we have below the thumbnails creeps up because the 
thumbnails <li> are floats. If you don't know about all the idiosyncrasies of floats, 
I encourage you to read up on them. Here is the link to a great article about floats: 
http://alistapart.com/article/css-floats-101

But, for now, I will just show you one way to fix this. All we need to do is clear the 
container that holds the text. You do that by adding the following SCSS/CSS:

.gallery-description {
  clear: left; 
}

Let's do just one more thing before we move on to the larger layouts: let's get all  
the content away from the edges of the screen and get it to a size similar to that  
of navigation. We can do this using a similar approach to what we used earlier  
with the hero.

Add the following SCSS/CSS code to your stylesheet:

.gallery-showcase, .gallery-description {
  width: 90%;
  margin: 0 auto;
}

Now, it's looking good! All we need is to make the layout appropriate for a larger 
layout. Once we are above 768 px, we can move the text up to the right of the large 
image. Go ahead and open up your _768 file or find the 768 @media query in your 
CSS and we will move the text up to right with minimal effort. Here is the SCSS/CSS 
code (again; it is the same as the one shown earlier in the chapter):

.gallery-showcase {
  width: 45%;
  float: left;
  margin: 0 2.5%;
}

.gallery-description {
  clear: none;
  width: 45%;
  float: left;
  margin: 0 2.5%
} 

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 64 ]

Now, drag your browser's width around and enjoy. There is one last problem to 
solve: you may notice that the headings shift up under the navigation part once the 
size of navigation changes. You may recall that this is due to the navigation part 
being a fixed element. All we need to do is specify a different margin on the  
page-header as follows:

.page-header {
  margin: 66px 0 12px 0;
}

And, that should look right. Refresh the page and enjoy!

The back link
Let's add a simple enhancement to the page in order to make navigation easy. Since 
this Gallery item page isn't in the menu and it wouldn't necessarily be practical to 
add a menu item for every Gallery item, let's just add a back link to the top of the 
page. This makes it easy for users on any device to get back to the Gallery page.

First, let's add this link to the markup on gallery-item.html. Make the back link 
the last thing inside the header:

<a class="back btn" href="./gallery.html">&lt; Back</a>

Here is the code in context:

<header class="page-header">
  h1>This is a Title</h1>
  <h2>Subtitle with more words</h2>
  <a class="back btn" href="/gallery.html">&lt; Back</a>
</header>

Refresh your browser and you will notice that you get some nice button styling for 
free, thanks to 320 and Up. We will need to do just a little bit more styling but first 
let me clear up something important. What we just built is one example Gallery item 
page linked from the gallery.html page. If you are building this as a hand-built, 
static site (despite my earlier advice not to), you will need to build this page manually 
for all your gallery items and give each page its own name that is not gallery-item.
html. Instead, you might need to name it company-site.html or whatever the project 
you are showing off is. Furthermore, you will notice that I created the back link back 
to the Gallery page as follows:

…href="gallery.html"…

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 65 ]

That is not a typical way to form links; in your own project you are more likely  
to make the link as follows:

…href="/gallery.html"…

In our example code, we need to use gallery.html because the more  
typical/gallery.html would take us to the root of our entire project. And, guess 
what? There is no gallery.html page at the root of this project because I have 
broken the project up into chapters. So, with this example project, you will get  
a 404 response (Page Not Found). Try it out.

To sum up, you will most likely want your link to look like href="/gallery.html" 
not like href="gallery.html".

Now, let's add some styles to that button so that it isn't just sitting in the middle of 
the page. The simplest thing to do, for now, is to float it to the left. To do this, add  
the following code of styles to your equivalent of the _page.scss file:

.back {
  float: left;
}

I nested this inside the code for .page-header. So, in this context, the code looks  
as follows:

.page-header {
  text-align: center;
  margin: 12px 0;
  h1 {
    font-size: 30px;
    margin: 0;
  }
  h2{
    font-size: 18px;
  }
  .back {
    float: left;
  }
}

And the code in CSS will look as follows:

.page-header .back {
  float: left; }

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 66 ]

That isn't enough, though. Refresh the page after adding this style and you will 
notice that things look broken. That is because we need to clear that float. Simple! 
Add the following line of code to your SCSS or CSS for the .gallery-showcase, 
.gallery-description style:

clear: both;

This style will be applied to both elements, which doesn't affect anything adversely 
for our purposes. If you want to, though, you can always split your CSS code up  
into two separate styles if it bothers you. There is one last thing to do now for this 
button. It is sitting right up next to both the viewport and the main image. Let's go 
back and add a margin to push it away from everything. Here is what the updated  
.page-header .back style should look like:

float: left;
margin: 20px;

Next, let's get the gallery item JavaScript happening!

The gallery item JavaScript
Next, we need to write some JavaScript to meet our needs in this Gallery item page. 
Our needs are very simple; if a user clicks on a thumbnail, we want to show the 
corresponding larger image. There are lots of strategies for this but I am going to rely 
on two things to do this fast and easily: our page structure and jQuery's ability to 
index things easily. So, let me show you the code first and then I will explain how it 
works. Paste or type this code into your script.js file, anywhere within the ready 
function (look at the code sample that can be downloaded from the Packt Publishing 
website if you aren't sure):

$('.thumbnail').on('click', function(){
  var idx = $(this).index();
  $('.featured-images').children('.active').removeClass('active');
  $('.featured-image-item').eq(idx).addClass('active');
  $('.thumbnail- 
    images').children('.active').removeClass('active');
  $('.thumbnail').eq(idx).addClass('active');
});

Here is what that code does line by line:

The following line of code attaches an event listener to the thumbnails so that, when 
it is clicked, the rest of the code inside that function is executed:

$('.thumbnail').on('click', function(){

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 67 ]

The following line of code gets the zero-based index of the thumbnail you just 
clicked on. In other words, it finds out how many other thumbnails are alongside this 
one and which number it is in the sequence. Zero-based is the way computers count. 
So, if you clicked on the first thumbnail in the list, it will get an index of 0; the second 
will get an index of 1. Sorry if that is confusing, but that is how computers count 
many things. Anyway, we are going to use that number to target the corresponding 
image in the list of featured-images in a moment.

var idx = $(this).index();

The following line of code removes the active class from the featured-image-item 
that currently has the class active on it:

  $('.featured-images').children('.active').removeClass('active');

The following line of code adds the active class to the featured-image-item 
container that is in the same place in the list as the corresponding thumbnail:

  $('.featured-image-item').eq(idx).addClass('active');

The following two lines of code function the same as the two we just looked at and 
also remove and add the active class on thumbnails instead:

  $('.thumbnail- 
    images').children('.active').removeClass('active');
  $('.thumbnail').eq(idx).addClass('active');

To oversimplify it a bit, the previous code says that, when a user clicks on the  
nth thumbnail, the active class makes it active, and then makes the nth featured 
image active.

Now that you have the active class, another nice enhancement is to add a border  
to highlight the active thumbnail.

Update your _page.scss file (or its equivalent) to the following code:

.thumbnail {
  float: left;
  margin: 0 20px 20px 0;
  &.active {
    border: 3px solid $basecolor;
    margin: 0 14px 14px 0;
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Gallery Page

[ 68 ]

The CSS code will look as follows:

.gallery-image-area .thumbnail.active {
  border: 3px solid #cb790f;
  margin: 0 14px 14px 0; }

I added a 3 px-wide border and chose our theme's base color (choose whatever color 
works best for you, though). Since the border will make each thumb take up more 
space, I reduced the margins by a corresponding amount. It makes the thumbnail 
jump a little, but I don't mind because it gives the user some feedback. If you do 
mind, I encourage you to find a strategy that makes it not do that!

Summary
We've covered a lot of ground, yet again! In this chapter, we made a gallery 
overview and a gallery detail that will work equally well for devices ranging from 
mobile phones to desktops. We re-used some of 320 and Up's upstarts so that we 
didn't have to build responsive, three-columned layouts from scratch. The columns 
stack nicely on small screens and arrange themselves horizontally to fill the width 
on wider screens. We made a slightly modified hero for the Gallery page without 
having to write a ton of override styles and we even wrote some elegant JavaScript  
to make the Gallery detail page interactive. In the next chapter, we will build a page 
so site visitors can contact us.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Contact Form
In Chapter 3, Building the Gallery Page, we built pages to show off our work. 
Hopefully, the quality of the work you show off on these pages is so compelling  
that site visitors will want to contact you to hire you for your amazing work.

Let's make the ability to do that easy and attractive!

Making a form plan
I know forms aren't exactly exciting, but we must get user info somehow, so we 
might as well make them look nice and not stodgy and cold. A clean and friendly 
form will be easy and minimal, gathering only the info we need. We also need to 
make the process of filling out a form as clear and free of frustration as possible. The 
320 and Up framework is built to facilitate quite a bit of this, but we will still need  
to do the requisite planning to make sure it is just so.

Luckily, this isn't going to be too tough for our rather simple needs. Let's think about 
the bare minimum we need to collect in order to follow up with a potential client. 
Here are the things we need:

•	 The prospect's name
•	 The company
•	 The e-mail address
•	 The phone number
•	 A message

A few important things to keep in mind are to make sure that the labels for all fields 
let users know what to put in which field. I think that the most compelling argument 
for a usable form goes like this:

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Contact Form

[ 70 ]

People read from left-to-right and top-to-bottom. Therefore, the label should appear 
above the input that it is describing, as the user will read the label first and then see 
the input. This of course is an assumption that our users understand the visual cues 
that define an input in a form. If we have users that don't know what form fields are, 
we are probably out of luck. That said, it's probably worth thinking about the fact 
that our user interfaces heavily rely on people understanding conventions!

There are other conventions we can use for our purpose on this form. A common 
one is the use of placeholders to show users examples of the kind of content that is 
expected in each input. Again, this convention is well-known to anyone who has 
been using the Internet for any significant amount of time. Hopefully, it could be a 
useful cue to someone less familiar with these conventions too.

Handling mandatory fields
The last things we need to let users know are the required fields that we want them 
to enter input into. There are two schools of thought on this; I will introduce both, 
mostly because I see the merit in both and it really depends on what you are doing.

One convention is to place the required * next to all the fields that are required. This 
convention again works for most visitors but the problem with this approach is that 
it might prevent gathering some information if we essentially annotate a few fields 
that we have as being optional. This argument basically claims that if we don't require 
a message and don't mark it as required, there is an increased likelihood of users 
skipping over this. Our form should absolutely require the user to submit a name and 
an e-mail; otherwise, we cannot respond at all. It's customary to not require a phone 
number or a message. Leaving the Phone field as optional is a courtesy in most cases 
for those who prefer not to be contacted via the phone. Leaving the Message field  
as optional is a courtesy to users. We don't want to make it mandatory as we can 
always respond once we have a name and e-mail, although our response will have  
to be really generic. It is helpful for our prospective clients to get a context for our  
next conversation. It saves everyone the time and energy.

With that in mind, I want to introduce the argument against following the 
convention of marking fields as required. Here is how the argument goes:

If we, as creators of the site, put on the form only the input fields that we absolutely 
need to follow up, then the form should be simple enough to not discourage a user. 
In our case, we have five fields, which is quite parsimonious. Then, by not marking 
any fields as required, we suggest that we want all the information we are asking for, 
but we don't actually require it. We can use form validation to then make sure we get 
the bare minimum, which in our case will be the name and e-mail.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 71 ]

Ultimately, these decisions take a lot of other things into account. Since our portfolio 
site is most likely to be for digital media work, our audience should be familiar 
with web conventions, and we can use that to everyone's advantage and present 
them with a clean, simple form. On other projects, you will certainly have to cater 
to different audiences or gather more data. Hopefully, walking you through my 
planning on this form will be of some help in the future decisions you make.

The form's layout
Ok, now let's move on to how we want this form to look at our breakpoints. This one 
will be easy because all our focus on this page is on getting some information from 
the prospective client. For this reason, we can get away with nearly having the exact 
layout from the mobile to the desktop.

Here's the mobile's layout:

And here's an example of a layout wider than 992 px:

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Contact Form

[ 72 ]

It's pretty hard to tell them apart! I know, the input fields are going to get 
unnecessarily wide if someone has this form open at full width on his/her brand 
new Thunderbolt. But really, we don't need or want any other content on this page to 
interfere, so we will make a small effort to still make the page look pleasing.

Ok, enough of talk! Let's write some code.

First, let's put one of those small hero areas just above the form. I always like the 
opportunity to add a human touch to things that I create on the Web, so just under 
the header, let's place this markup:

<!--hero markup -->
  <div class="hero subhead">
    <div class="container">
      <h1>Say Hello!</h1>
      <p>I just met you and this is crazy. Leave your number, I'd love 
to work with you.</p>
    </div>
  </div>  <!--end hero markup -->

You should probably put your own message in there, but you get the idea.

After that, let's put the markup we'll need for the form. The markup we'll be using 
here goes after the hero:

<!--form -->  <div class="full row clearfix">
    <h2 class="h2">Hello! Is it me you're looking for?</h2>    
<p>Reach out to me for your new projects.</p>
    <form method="post" action="#" class="contact">      
<p>
<label for="name">Name</label>
<input id="name" name="name" placeholder="Firstname Lastname" 
type="text" required/>
</p>
<p>
<label for="company">Company</label>
<input id="company" name="company" placeholder="Widgets Inc." 
type="text"/>
</p>   
<p>
<label for="email">Email</label>>>      
<input id="email" name="email" placeholder="firstname@somename.com" 
type="email" required/>
</p>
<p>         
<label for="phone">Phone</label>        

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 73 ]

<input id="phone" name="phone" placeholder="123-456-7890" type="tel"/>      
</p>      
<p>         
<label for="message">Message</label>        
<textarea id="message" name="message"></textarea>      
</p>      
<p>         
<input type="submit" class="btn btn-primary btn-extlarge" value="Send 
It!" />      
</p>    
</form>  
</div>  
<!--end form -->

This markup is mostly straightforward, but I have used markup that is slightly 
opinionated and is good practices. First, you will notice that I have not supplied 
a value for the action parameter for the form that is used to post form data to a 
server. I will leave that to you, as we will not be making a backend to handle this 
data (alternatively, you can use one of the many nifty services out there that will 
handle contact and e-mail forms for you).

Moving down the code, you will notice that I have wrapped every label and input 
pairing in <p> </p> tags. This isn't uncommon but it is an opinionated way to handle 
the laying out of the form. I prefer not to style inputs and form controls if I can 
avoid it. For sites that grow, these can lead to a lot of work that isn't reusable. You 
can eliminate or reduce this by relying on styling some elements that wrap the form 
controls. As always, keep these elements semantically appropriate. I would argue 
that a label and an input form something of a paragraph, as they share the same 
subject and are a break in the subject of the content that follows.

Input label magic
Also, especially for mobiles, always take advantage of the for attribute in the label 
that works only if you set the value of that parameter to mirror the value of the ID 
of the input you want to associate with it. In other words, if your label is the E-mail 
input, give that input an ID of email (id=email) and set the label to email as well 
(name=email). This practice is not just semantic, otherwise, I probably wouldn't 
bother. Once you have paired an input and a label in this way, some magic happens. 
The label now gets magical powers—when a user clicks or touches the label, the 
input it is paired with will get focus. This standard has been around long before 
the practice of browsing the web with touch interfaces was common, but what an 
awesome feature for touch! Now, users with fat fingers, shaky hands, or imprecise 
movements will be more likely to hit their mark. If you never knew this, test it out. If 
you knew about it already, I hope you skipped this paragraph; time is precious.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Contact Form

[ 74 ]

I still have a few more things to point out. I have placed the required attribute on 
all fields that I want to be mandatory. This attribute is new to the HTML 5 spec and 
does some nice magic under the hood. We will need to make a fallback for browsers 
that don't support this feature, but you can temporarily enjoy the fantasy that HTML 
5 will make your work as a web developer easier than it was before (don't worry, 
you still need to write some JavaScript to help validate this form). Still, this feature 
will be a time saver once you get to the point where nearly all your potential users 
are using modern browsers (the question is, when will that be?). Anyway, go ahead 
and try it out. Start up a simple server, such as the Python Simple HTTP server, and 
visit your contact form in its current state. Don't bother filling out the form, then 
hit Send It. If you are using Chrome, you will get a nice validation error message, 
Please fill out this field, in a tooltip:

Modern versions of other browsers (Firefox, Safari, and Internet Explorer) will do 
something similar. Try it on your mobile too; it's pretty nice!

Okay, the fun will be over soon enough, as we will need to make fallbacks for 
browsers that don't support this feature. But we still have a few fun enhancements 
to add, thanks to the HTML 5 spec. Next, I'd like to point out the absolutely painless 
enhancements you get with some HTML 5 form field attributes. You will notice that 
the input for an e-mail is set to type="email". That attribute gets you two kinds 
of special sauces. On both the desktop and mobile (in browsers that support it, of 
course), you get the kind of validation for e-mail addresses that we've been writing 
in JavaScript for years. It looks for an @ and all that. On a mobile, it should open a 
soft keyboard that features a prominent @ as well.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 75 ]

The other field we use with a nifty attribute introduced in HTML 5 is the type="tel" 
attribute. The only benefit to this is that on mobiles, it will pull up a numeric 
keyboard rather than an alpha keyboard.

This is just a really nice thing to do for those poor souls filling out a form on a small 
screen. Your users will thank you.

Now, let's add the minimal styling that we will need to get this to look consistent 
with the rest of our apps. Everything looks pretty great; the only exception is that the 
borders on the inputs are orange. If you are using SASS, and your compiler writes 
the line numbers of the styles, this is really easy to debug. I've been encouraging 
you to use SASS all along, but one thing I really like is the ability to print the line 
numbers of all the style selectors while you are in development. You really need to 
compile the compressed CSS for production, but for development, always switch 
over to code that is friendly for debugging. I use CodeKit for this and for a handful 
of other reasons. I should add that I generally use open source, Command-Line 
Tools. For example, I use tmux and vim to write code, not a standalone text editor. 
But Codekit has so many useful features that are effortless to configure and I am 
really addicted to it. I only wish it had a command-line version.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Contact Form

[ 76 ]

CodeKit makes my whole day easier when I have to solve problems in CSS.

Here is what I see in Chrome development tools when I look at what is going on 
with these wacky orange borders:

I see that the border properties are defined at line 79 in _forms.scss. Super  
helpful, yes?

Unfortunately, that is not the end of the story. When I get to that line of code, here is 
what I see:

input,
textarea,select {
display : inline-block;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 77 ]

width : 100%;
padding : 4px;
margin-bottom : $baselineheight / 4;
background-color : $inputbackground;
border : $inputborderwidth $inputborderstyle $inputborder;
color : $textcolor;

&:hover {
border-color : $inputhover; }
}

Right off I notice two things. The border color is defined with the variable 
$inputborder and the hover color for that border is defined with $inputhover. In 
my opinion, these are poorly named variables as they are not semantically accurate, 
but to be fair, I've done worse in the past. At any rate, if I could pick an improvement 
here, it would be to name these variables something in order to point out the fact that 
they are actually variables for color—something such as $inputbordercolor and 
$inputborderhovercolor. Sure, those are long names, but they are precise.

Okay, moving on. We need to go to the _variables.scss partial to see what is 
going on. Why are these borders orange, for goodness sake? Don't panic, help is on 
the way. Going into the _variables.scss file, I do a quick search for $inputborder 
and here is what I see:

$inputborder    : lighten($basecolor, 40%);

Let's think about what is going on in the code. For many designs, using the base 
color for input borders can create a harmonious design. But, in my example, I have 
chosen a yellowish orange color, which makes for pretty low-contrast borders. To 
be honest, they look annoying to me; I can't imagine what they look like to someone 
who has visual challenges. But, furthermore, I would guess that 90 percent of the 
time, I want my input borders to be some shade of grey. Why? Well, with something 
as critical as creating a form, I want to make sure that the fields are well defined with 
a high-contrast color, and with a white background, the greatest contrast comes with 
black. If #000 black looks too stark, we can always choose a darker shade of gray that 
is near to black. At this point, I think it's best for this design (and perhaps others in 
the future) to go ahead and redefine this variable as some shade of gray.

Let's try this:

$inputborder    : $lightgrey;

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Contact Form

[ 78 ]

I actually experimented with all the greys defined in this variable file, and I prefer 
the lighter grey. It helps the rows look more organized. Another thing you may have 
noticed by now is that the border still changes to an orange color when you hover 
over the input. Let's make that a darker grey instead. Similar to what we followed 
previously, you will notice that the input:hover style is defined in the _forms.scss 
file. It looks like this:

&:hover {
    border-color : $inputhover; }

So now we go to the _variables.scss file to redefine $inputhover!

Let's make it like this:

$inputhover     : $grey;

Looks good!

We just need a few more things to tune up the styles on this page. Let's make 
the inputs look nicer and more consistent in terms of how inputs are rendered in 
a mobile browser. You will notice in the previous screenshot on the form of an 
iPhone (or on your own mobile, if you are checking your work there) that the inputs 
automatically get rounded corners on the mobile. Let's set a style to do that in our 
forms page.

I want to change all inputs across the site, so I am going to go and edit the  
_forms.scss file.

Update this style:

input,
 textarea,
 select {
 display : inline-block;
 width : 100%;
 padding : 4px;
 margin-bottom : $baselineheight / 4;
 background-color : $inputbackground;
 border : $inputborderwidth $inputborderstyle $inputborder;
 color : $textcolor;
 @include rounded(6px); //this is the new bit

 &:hover {
 border-color : $inputhover; }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 79 ]

While using rounded mixin, I like 6 px, but feel free to round it to your taste. One 
more thing that I'd like to change with these inputs is the padding. Having a big 
target is nice, but they could also do with a little breathing room between the words 
and the border of the input. Just below that rounded mixin, let's add some padding:

padding: 10px;

Looking much better!

The last styling task we have on this page is to contain the width of the form. Let's 
keep the form from getting any wider than 992 px and keep it centered.

We can do that without having to use any @ media queries actually. Let's go back to 
the site.scss file and add a style that will work the same if we want to reuse it:

.row {
  max-width: 992px;
  margin: 0 auto;
}

This does exactly what I described previously. This is actually a great example of 
how to think about being responsive without necessarily relying on newer standards.

Okay, now the last thing we need to do is go hook up the validation that will work 
for browsers that don't yet support the HTML 5 required attribute.

JS validation fallbacks
Well, we could write all our fallbacks. Knowing how to write fallbacks is super 
useful but that is beyond the scope of this book. Also, there is a really awesome way 
to make fallbacks that have been made already. It is called webshims and you can 
find it here: http://afarkas.github.io/webshim/demos/index.html.

This library makes it super easy to take advantage of a lot of HTML 5 features 
without writing a ton of support for older browsers. In our case, we will have to do 
very little to support the HTML 5 validation in our form.

Download the lib from the site I listed previously. Once you do that, copy the  
js-webshim folder to your project. I've already done that in the after folder for  
this chapter.

Now, we need to do two more things and we will be good to go.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the Contact Form

[ 80 ]

Include the polyfiller script from the webshims lib at the bottom of the contact.
html page:

<script src="js/js-webshim/minified/polyfiller.js"></script>

You must put this after jQuery but before the scripts you write.

Now in script.js, add this line to instantiate the polyfiller script:

$.webshims.polyfill();

I have put this inside the ready function to make sure that all the form elements are 
present in the Document Object Model (DOM) before it fires.

Now, we're done polyfilling our form validation and it should work in browsers that 
don't support HTML 5 validation. Enjoy!

Summary
So, in this chapter, we planned our way to a much simpler layout than any of our 
other pages, but for good reason. No one likes filling out forms much, but if we 
can keep the noise down on pages with forms, we can encourage users to give us 
the information to better facilitate communication. Or at the very least, we won't 
discourage people from filling out our form.

Probably, the biggest challenge here is the cross-browser support for client-side 
validation. Until it is known that the majority of users use modern browsers, we still 
need to shim and polyfill, but as we saw, well-written code makes that fairly easy 
too, unless our requirements are complex.

Next, let's move on to the About Me page.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the About Me Page
In the previous chapter, we built a form potential for the clients to contact us. This 
is just one part of the formula of the current model for a portfolio site, either for 
personal business or for any other business use. The last aspect of this convention 
is the About Me page. This is arguably the least important page I have often seen 
and have had to consult with clients who do pretty weird stuff in this corner of their 
websites. That said, I think it is usually well-intentioned.

But before we get back to designing and coding, I want to put forward an argument 
for and against the About Me page.

Justifying the About Me page
Everyone wants their website to meet what can seem like two conflicting goals, 
which are as follows:

•	 Goal 1: We are professionals. Here is our work and our track record. We are 
different from our competitors.

•	 Goal 2: We are just people! And I am just like you! We have warm blood 
flowing through our veins just as you do!

So, rhetorically speaking, this actually makes a lot of sense, right? You want to make 
an emotional connection with your audience. This is called pathos in the study of 
rhetoric. If you don't make an emotional connection, the likelihood of getting a client 
or a sale decreases for sure. But, believe it or not, I just genuinely enjoy connecting 
with people, hearing about their experiences, and I really enjoy helping them solve 
problems. Furthermore, I find it gratifying to communicate (whether via the web or 
by any other means) in ways that convey my warmth and humanity (hope I'm right 
about that one). It's pretty awesome that I get to make money while doing it.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the About Me Page

[ 82 ]

I am not a rare breed. Despite some silly stereotypes, I find that web developers 
are very social people who also enjoy technology. So, why is it that so much of the 
software we make lacks personality and a human touch? No idea. But I am here 
to argue for more of it. As a user of any technology, anything that is designed to 
acknowledge my humanity, and the actual conditions of my living, makes me happy. 
They can give you a moment of delight or deeply gratifying experiences.

All of this is to say that the About Me page is a nice place to shed light on yourself 
(either individually or collectively) and is but one strategy for connecting with your 
audience. But if you haven't connected with your audience by the time you get to 
the About Me page, in the current vernacular "ur doin' it wrong". And if your clients 
ask you to do this, you are still doing it wrong. To me it's important to imbue a site 
with the right tone as well as to make the site really usable. For a portfolio site, this 
is deceptively easy because the conventions are pretty mature. And for this book 
we've just used the conventions to make the About Me page quickly. But ultimately, 
this is just a framework. It's up to you to be creative without being overwrought, by 
adding surprising things, or maybe just one surprising memorable thing to your site. 
Hopefully using a fast, easy framework gives you more time and brainspace to do 
this. My worst fear about frameworks is that they facilitate rapid production of sites 
that are all nearly indistinguishable.

So, my real point is, do have an About Me page, do it well, but make sure the whole 
site is also about you. It takes more work, and there are risks, but ultimately I think 
it's worth it. The other thing is this book isn't really about this; I am not going to 
teach you how to create the About Me page though this is the main topic of this 
chapter. That really warrants the attention of a whole book, not to mention a book 
that is less technical. So I apologize in advance that this chapter is going to be mainly 
about how to lay this page out.

With that said, let's get started on designing this page. The kind of content we will 
need on this page will be quite simple. It will include the following:

•	 Some details about the services we're going to offer.
•	 Images of the company members. We will assume a small number for this 

scenario but include a strategy for dealing with a larger number. Obviously if 
this is just you, you're only going to need one photo. Make it good; some text 
for bio(s), something snappy, but also meaningful.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 83 ]

Making the wireframes
Let's take a look at some wireframes for this page. For these examples, I am going to 
assume that this is a portfolio site for a one person. But if you had a small group, you 
would probably want to reconsider this layout. We will discuss more on this later. 
For now, here are the wireframes for the mobile view. First, the top part of the page 
(under the marquee, which will remain consistent):

Notice that we have three services listed and stacked. We're going to use the set 
of included icons to make big, eye-catching icons to the left of each service/skill 
described. Below the icon we will put the obligatory headshot and bio:

www.it-ebooks.info

http://www.it-ebooks.info/


Building the About Me Page

[ 84 ]

Now here is how we will use the same content on a wider desktop layout:

We'll use the wider layout of this page to put some of the content on the sidebar. This 
has the benefit of letting users see more content without scrolling.

The markup
Let's start with the markup for this page. This page will have a special technical 
challenge, since neither does 320 and Up ship a way to make this kind of sidebar, nor 
was it really meant to. Other frameworks such as Bootstrap and Foundation have 
that facility. We will roll our own solution though. No need to introduce an entire 
framework to solve this single problem. With that said, I will be taking a cue from 
how these frameworks do this.

To work this problem through, let's start off with some pretty basic markup for the 
mobile layout. First, let's add another, our last, marquee (don't shed a tear, though; 
you can make as many as you want in the future).

<!--hero markup -->
<div class="hero subhead">
  <div class="container">
    <h1>Let's Talk About Me.</h1>
    <p>Read on to learn about my special powers.</p>
  </div>
</div>
<!--end hero markup -->

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 85 ]

Hopefully this all makes sense by now. Now let's add our first bit of markup for the 
main area, the one that describes all the stuff we have to offer. We know we need the 
following things:

•	 A wrapper for all the content, so we can pad and set width on the content of 
the page as necessary for various screen widths

•	 A wrapper for the main content and the sidebar content, for similar reasons 
as the previous point

•	 Various containers and markup for all the actual content

So here it goes. Let's put this markup below the marquee:

<!--main content -->
<div class="full summary">
  <div class="main-content">
    <div class="content-item">
      <div class="circle pull-left">
        <i class="icon-fire big-icon"></i>
      </div>
      <div class="content-body">
        <h4 class="content-heading">Startup Igniter</h4>
        <p>Umami kogi placeat trust fund. Officia ethnic esse  
          laboris umami commodo. Eiusmod single-origin coffee  
            occupy.</p>
    </div>
  </div> <!--end content-item -->
  <div class="content-item">
    <div class="circle pull-left">
      <i class="icon-leaf big-icon"></i>
    </div>
    <div class="content-body">
      <h4 class="content-heading">Code Grower</h4>
      <p>Umami kogi placeat trust fund. Officia ethnic esse  
        laboris umami commodo. Eiusmod single-origin coffee  
          occupy.</p>
    </div>
  </div><!--end content-item -->
  <div class="content-item">
    <div class="circle pull-left">
      <i class="icon-lemon big-icon"></i>
    </div>
    <div class="content-body">
      <h4 class="content-heading">Lemonade Maker</h4>

www.it-ebooks.info

http://www.it-ebooks.info/


Building the About Me Page

[ 86 ]

      <p>Umami kogi placeat trust fund. Officia ethnic esse  
        laboris umami commodo. Eiusmod single-origin coffee  
          occupy.</p>
    </div>
  </div><!--end content-item -->
</div>
  <div class="sidebar-content">

  </div>
</div>
<!--end main content -->

We've re-used the .full class that applies the same styles on all our main content, 
which is mainly padding and margin. I've created a lot of new classes too. Right now 
there are no styles for them but let me explain my thinking before I go ahead and 
style them.

The next container after .full is the .main-content container. It will not do much 
in the mobile view, but as the layout gets wider we will assign a size to it and float it 
so there is room to float the .sidebar-container to the right (spoiler alert).

Within the .main-content container, we are going to have three chunks of 
content consisting of an icon, a heading, and some text. I gave each chunk the class 
.content-item. Inside the class, there is a div tag that I will change into a circle 
(well, for modern browsers anyway) that will frame icons. That is followed by the 
content-body div class, which will hold a heading and a short blurb about my 
special prowess that I want to describe. Rinse and repeat the content-items class as 
much as you like, but I like sets of three. Three is a magic number after all.

Notice that I use the icon classes that are in the framework. They utilize the font-
awesome font. They are super easy to implement and are super flexible as you will 
see when we start to style them. All you need to do to get them to appear in your 
markup is add the appropriate class to your markup. I add these classes to the 
<i> tag, which is something of a convention, but you can just easily use them on a 
<span> tag, <a>, or whatever as long as the markup makes sense. You will notice 
that I also add the class .big-icon on each one. That is because I anticipate that I 
will need an additional style to make these big and add some other styling for larger 
layouts. Next, let's take advantage of the set of icon fonts that ship with 320 and Up.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 87 ]

Awesome icon fonts
For future reference, take a look at the _font-awesome.scss (or similar) file and you 
will see a list of all the icons created by the styles to facilitate the use of the font-
awesome icon fonts. These are just prerolled for us but if you need a new icon that 
has been added to font-awesome, you will need to add it to this list (or one of your 
own making). You will notice that the icon is actually specified with the content 
attribute. For example, the lemon icon CSS looks as follows:

. icon-lemon:before              { content: "\f094"; }

This is because the icon is specified with the Unicode character F094. You can look 
this up at http://fortawesome.github.io/Font-Awesome/icons/. Just click on 
each icon to get to know a little more about each one.

While we're here, let's take a quick look at what else is going on to support these icon 
fonts. At the top of the _font-awesome.scss sheet, you will see that anything that 
has a class beginning with icon- gets some style by default. That is specified with 
this style:

[class^="icon-"],
[class*=" icon-"] {
display : inline;
width : auto;
height : auto;
line-height : inherit;
vertical-align : baseline;
background-image : none;
background-position : 0 0;
background-repeat : repeat; }

The previous code targets anything beginning with or containing icon-. This 
is done with the regex ^ and *. Regex is the shorthand for regular expressions. 
Regular expressions are a utility for searching strings; they use various symbols to 
accomplish this task. Regex is a huge topic beyond the scope of this book but just 
know that, by using these symbols in CSS, the CSS engine searches selector strings in 
your markup. Not all the available regex symbols can be used in CSS, but the use of 
^ and * can be quite powerful.

Keep reading and you will see that there are additional styles applied if you use 
these classes on the <li> or <a> elements. There are even special styles defined for 
putting elements inside buttons or the <li>tags. We won't be using these but please 
do experiment with them.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the About Me Page

[ 88 ]

If you go ahead and refresh your page, this won't look too great; so let's get on with 
styling this for the 320 and Up layout. The first thing I want to do is make the circles 
that will hold our icons. I want all these circles to be of the same size, so I am going 
to set a uniform size as well as a few other styles that I will explain in a moment:

.circle {
  background: #FFA500;
  @include rounded(28px);
  height: 56px;
  width: 56px;
  position: relative;
}

I actually arrived at these dimensions through a little trial and error but I won't bore 
you with that. The border radius is set to half of the height and width of the element. 
That is the recipe for making a circle. Obviously, someone using an old browser 
will get a square. If you're not okay with that, you can put some kind of polyfill 
or fallback in place. Notice that I used the mixin to make the vendor-specific border 
radius, but if you're using plain CSS you will need to type all of these.

Lastly, I set the position to relative on these icons so I can absolutely position 
each icon within the circle. They all have different dimensions, so they will each  
get a unique position to accommodate that.

Let's move on to styling and positioning them. Put these styles below the  
.circle style:

.big-icon {
  font-size: 2em;
  color: #FFF;
  text-shadow: -1px -1px #999;
  position: absolute;
  &.icon-fire {
    top: 15px;
    left: 18px;
}
  &.icon-leaf {
    top: 16px;
    left: 13px;
  }
  &.icon-lemon {
    top: 15px;
    left: 16px;
  }
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 89 ]

The previous code is the SCSS code. Here is what regular CSS looks like:

.big-icon {
  font-size: 2em;
  color: #FFF;
  text-shadow: -1px -1px #999999;
  position: absolute; }
  .big-icon.icon-fire {
    top: 15px;
    left: 18px; }
  .big-icon.icon-leaf {
    top: 16px;
    left: 13px; }
  .big-icon.icon-lemon {
    top: 15px;
    left: 16px; }

The .big-icon styles just make the icons bigger, white and with a little shadow that 
makes them look like they've been subtly embossed into the circle. Kind of a cool 
effect I think. I also set the position to absolute here for all the icons. I arrived at 
all the positions of the icons through a combination of math and eyeballing it.

Here's the math method. Looking at the icons in the developer tools in my browser 
I get the dimensions. Using the fire icon, for example, I see that it measures 22 x 25 
pixels. So to get the left positioning, I subtract the width of the icon from the width of 
the circle, that is, 56 – 22 = 34. Divide that by 2 to get the left position because the left 
position is on the top-left of the icon, so we need the distance from the left edge of the 
icon to the center of the icon. This gives us a left position of 17 px. But then I eyeballed 
it and liked 18 px better, go figure. Rinse and repeat for the remaining icons.

Now, we need to position the text to the right of each icon. Here's how that will look:

.content-body {
  overflow: hidden;
  .content-heading {
    margin: 0 0 5px;
  }
}

This is pretty simple. The only thing that may seem weird is the overflow: hidden 
business. All that it does is make sure the text stays in a tidy little box, rather than 
flowing around the icon div. To learn more about this, you should consult Google, 
but you can refer a fabulous article at http://alistapart.com/article/css-
floats-101.

www.it-ebooks.info

http://www.it-ebooks.info/


Building the About Me Page

[ 90 ]

Go ahead and refresh the page and take a look. Looks pretty great, but the icon is too 
close to the text. Let's fix that. Add the following code to your circle styles:

.circle {
  margin-right: 12px; /* this is the new bit */
  background: #FFA500;
  @include rounded(28px);
  height: 56px;
  width: 56px;
  position: relative;
}

Ah! Now it looks good! Let's move on to adding our picture and bio. Here is the 
markup we will need:

<!-- sidebar content -->
<div class="full bio">
  <div class="sidebar-content">
    <div class="image-container">
      <img src="img/gallery_image-1.png"/>
    </div>
    <div class="bio-container">
      <h3>Will Smith</h3>
      <p>Seitan gastropub jean shorts DIY, shabby chic scenester  
        flannel umami. Keffiyeh freegan small batch Neutra before  
        they sold out, literally salvia 8-bit. Flannel trust fund  
        swag Austin, locavore sustainable irony. Fingerstache pop- 
        up readymade Schlitz try-hard. Roof party 3 wolf moon  
        forage Schlitz, butcher squid Pinterest cardigan seitan.  
        Cray YOLO helvetica, cliche tattooed single-origin coffee  
        selvage food truck gastropub. Disrupt McSweeney's ugh put  
        a bird on it.</p>
    </div>
  </div>
</div>
<!-- sidebar content -->

Notice that we are using the large placeholder image we used for the gallery page, 
but of course you need to use your own favorite glamor shot. Speaking of the gallery 
page, we will need to use some similar styles here to get the image and text to look 
right. Since we have re-used the full class on both sections, there is an appropriate 
amount of space between the bio content and the edge of the viewport. We just need 
to put a margin below the image to push that header down. Add this style:

.image-container {
  margin-bottom: 2em;
}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 91 ]

Feel free to adjust the margin according to your tastes.

Take a look at this layout at 320 px wide and everything is hunky-dory. Let's get this 
to layout as two columns when the screen is 992 px wide or greater. Go ahead and 
resize your browser to 992 px (or just look at it on a tablet or something). It looks 
pretty weird. Luckily, all we should need to do is assign the appropriate percentage 
widths to these and float them. Try adding these styles:

.summary {
  width: 55%;
  float: left;
}

.bio {
  width: 35%;
  float: right;
}

We can use the classes summary and bio on each block of content now. Go ahead  
and refresh and you will notice that the footer is now trying to squeeze into the tiny 
area between the columns. Easily fixed. Just add this style to your footer styles in  
the _site.scss file:

clear: both;

Fixed!

Ok, that is all!

Summary
In this chapter, we learned to use icon fonts and style them so they look every bit 
as good as bitmap images; however, they are far more flexible since we can resize, 
color, and add simple effects such as shadows via CSS. We also whipped up a 
custom layout very quickly to accommodate our content needs. Awesome! Now go 
out there and use what we've done to build great stuff for yourself and your clients!

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Anatomy of  
HTML5 Boilerplate

This appendix is to help those who have no experience with HTML5 Boilerplate.  
If you know all about it, there is no need to read any further (thus the reason this  
is an appendix). But if you are new to HTML5 Boilerplate, this appendix will help 
you get started with 320 and Up with a deeper knowledge of what is going on.  
In this appendix, we will look at the structure and choices of HTML5 Boilerplate  
and understand the implications of its choices to the further web pages you  
may develop.

What is HTML5 Boilerplate?
First of all, you can find the home page for the project at http://html5boilerplate.
com/. The site offers a quick overview of HTML5, but does not provide much context 
to why HTML5 Boilerplate is useful and why it was created at all.

I won't go extensively into the history of HTML5 Boilerplate. This book is mainly 
focused on how to do stuff, not how stuff happened, so I will try to explain just 
enough of the background to let you know how it works, with the hope that your 
future use of HTML5 Boilerplate with 320 and Up (as well an any other framework) 
will be with enough understanding to help you solve future problems.

In essence, HTML5 Boilerplate was a project started with the intention of creating  
an HTML page that had all the components one would need to make an effective, 
cross-browser web page; it also utilizes all the goodness available in modern 
browsers that support the modern HTML5 specification.

www.it-ebooks.info

http://www.it-ebooks.info/


Anatomy of HTML5 Boilerplate

[ 94 ]

If you want to know more about what I mean by HTML5 specification or what the 
difference is between a modern browser and an old browser, then I encourage you 
to do some searching and reading. Any links I leave for you are at the risk of being 
out-of-date soon. But, briefly, HTML5 is a specification for what browsers should do. 
It is an effort to make all browsers support the same or similar features so as to make 
it possible for web developers to make a web page and have it behave the same in all 
the browsers. This is not a reality yet, nor do I think it will ever be; to be fair, though, 
things are a lot better than they used to be.

So, currently, as a web developer, in most situations, you will most likely have to 
support, at a minimum, Internet Explorer (IE) Version 8 and up, Firefox 4 and up, 
and the current release of Chrome (Version matters less with Chrome, since it has 
always encouraged users to update). Note the challenge here. The current versions 
of all the browsers, except Chrome, are higher than those you must support. Also, 
chances are, if you are making a site at the time of writing, you may actually need to 
support older versions of these browsers as well as a few more browsers, depending 
on your user base. And those are just the desktop versions; forget about all the 
mobile versions of those browsers as well as the Android flavor of WebKit, which 
has a bazillion versions out there.

Knowing this, you can see why I and so many other frontend engineers evangelize 
for simplicity in frontend design. A simple design has a high likelihood of giving a 
good experience to the end user as well as something approaching consistency.

But, you don't get that experience and consistency without some effort. HTML5 
Boilerplate goes a long way towards making that effort on your behalf. Let's walk 
through it for a few pages to better understand how it works. As you read along,  
I suggest that you pull up the index.html file from the before directory in  
Chapter 1, Mobile First – How and Why. This is the boilerplate version before  
we added anything to it. Let's start at the top!

Conditional comments
The code for conditional comment looks as follows:

<!--[if lt IE 7]><html class="no-js lt-ie9 lt-ie8 lt-ie7"  
  lang="en"> <![endif]-->

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A

[ 95 ]

This code is nested inside comments but has some conditional logic. Only Internet 
Explorer has the super powers to use this logic. The previous example only renders 
the HTML code inside the comments if the browser executing it is a version less 
than IE7, thus the syntax [if lt IE 7]. You can infer that different HTML tags 
are rendered based on the version of IE. You can use the classes in this HTML tag 
to make special styles that are typically necessary to deal with the shortcomings of 
these older browsers.

If you jump ahead a bit, you will see the following conditional comment:

<!--[if (lt IE 9) & (!IEMobile)]>
  <script src="js/selectivizr-min.js"></script>
<![endif]-->

This includes a JavaScript library included in the 320 and Up framework that allows 
CSS3 selectors to work in browsers older than IE9.

Many, many mobile meta tags
So next, within the head tags, you will see some meta tags that are used by vendors 
to perform a magic trick. The first one to take note of is as follows:

<!-- http://t.co/dKP3o1e -->
<meta name="HandheldFriendly" content="True">
<meta name="MobileOptimized" content="320">

You can visit the link provided in the comment if you want further details on meta 
tags. I encourage you to do so.

To summarize, these meta tags help mobile browsers know that they can render a 
page that isn't only intended for desktops. Get used to this as there is a lot more of 
this kind of thing coming ahead.

After this, there is a bunch of comments that allow you to create icons for the Apple 
devices. These icons are cool if a user wants to create a shortcut for your website. 
It creates an icon for your website just like an app would have. If you want to take 
advantage of this, you need icons of all the dimensions, and you need to either place 
them in the path already specified or edit the path so it loads your icon files.

There are still more Apple-specific meta tags. For many, as you can see, you just need 
to fill in the blank field (for example, apple-mobile-web-app-title).

<meta name="viewport" content="initial-scale=1.0">

www.it-ebooks.info

http://www.it-ebooks.info/


Anatomy of HTML5 Boilerplate

[ 96 ]

The previous line of code makes sure that the page doesn't get zoomed in as long as 
you have the content field in the next code line set to yes:

<meta name="apple-mobile-web-app-capable" content="yes">

In the next section, the one labeled startup images gives your web page more 
app-like functionalities. When users launch your site from their home screen, these 
images will fill their screen until the page loads. Again, you will need to provide 
images of all the dimensions listed and put them in the correct path. However, you 
should know that this particular block of markup can potentially be removed and 
applied with cleaner code. You will learn about this in a moment when we go over 
the helper.js file together.

Mercifully, the next set of tags for Windows 8 adds almost no new work! This tag 
can and should share the icon you created for Apple, and will appear in those nifty 
Windows 8 tiles. You can set the color of your tile in the following tag:

<meta name="msapplication-TileColor" content="#000">

Please, please, I beg you. Set it to hot pink.

Whew! We're done with the head!

Now, you can skip to the bottom of the file.

Including the scripts you'll need
The rest isn't terribly surprising. We include the following scripts below the footer, 
and in order:

•	 jQuery (from a CDN first, then locally as a fallback)
•	 A plugins file
•	 A script file
•	 A helper file
•	 Google Analytics

There is no problem with making your site this way but I often combine plugins, 
scripts, and helpers into one file.

The helper.js file should come before the script file; otherwise you can't call the 
functions in it. If they are correct, just rearrange them and you'll be good to go.

The last thing is I want to give you an overview of the helper file, since that is a part 
of the HTML5 Boilerplate.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A

[ 97 ]

The helper.js file
The code in this file is really helpful. The comments in it explain what each function 
does for the most part. Nonetheless, I'd like to highlight a few things and make sure 
you know how to implement them.

Basically, to call any function in here, just find one in the file you need (or just 
want to try) and put (); after it. That is JavaScript's way of executing a function. 
For example, the first usable function defined in this file (you can tell that they are 
functions because they have the word function in them) is as follows:

MBP.scaleFix = function() {…

If you want to use this function, just add this to your script file:

MBP.scaleFix();

Et voilà! You just called this function. Now let's go through a quick rundown of what 
the most useful functions in here do. Keep in mind that many of the items in this 
script are used by the functions themselves; so, if you try to use them, they might  
not do anything, especially the ones that don't have the word function in them.

•	 MBP.scaleFix: This function stops an annoying bug that happens in iOS. 
This bug manifests itself when a user rotates the phone from portrait to 
landscape. In landscape, your lovely web page will end up running off the 
edge of the screen. But, no worries; this script fixes it. So you should use it.

•	 MBP.hideUrlBar and MBP.hideUrlBarOnLoad: These two functions are 
callable but you are more likely to use MBP.hideUrlBarOnLoad to do  
pretty much what it says. This function is useful on mobiles because, once  
the page loads, it scrolls the URL bar up out of the view, thus saving precious 
screen real-estate. This is super useful for users who use Safari on an iPhone. 
I suppose you could call MBP.hideUrlBar but I have a hard time imagining  
a scenario where you want to directly call it without freaking out users.  
MBP.hideUrlBarOnLoad calls MBP.hideUrlBar.

•	 MBP.fastButton: This is a function to get around a feature of WebKit 
browsers that introduces a slight delay when users touch a link or button. 
Use this with caution.

www.it-ebooks.info

http://www.it-ebooks.info/


Anatomy of HTML5 Boilerplate

[ 98 ]

•	 MBP.splash: This script can replace the Startup images block of 
commented-out code that we were discussing previously. It is provided in 
the head of the boilerplate that we were previously examining. If you've 
forgotten about it already, go back and read it over again. I really like the 
cleaner page when using this JavaScript to replace all that markup in the 
page, especially considering that only a few users will ever see this splash 
screen. In fact, if you go grab the most current version of HTML5 Mobile 
Boilerplate, instead of the index page provided in the current (as of this 
writing) version of 320 and Up, it won't have that block of markup with  
all the splash images.

•	 MBP.autogrow: This feature is great if you have forms on your responsive 
site. It makes <textarea> grow as a user fills it.

•	 MBP.enableActive: This is another awesome enhancement that enables 
the active pseudo class in Mobile Safari and is nice for user feedback on 
those buttons that tend to lag a bit (unless you are brave enough to use 
FastButton).

•	 MBP.preventZoom: This does what it says. The default behavior of Mobile 
Safari is to zoom in when an on-focus event happens. This is really 
inconvenient for users as they have to then manually zoom out after  
they are done inputting text to an input field.

Now you know enough to go experiment with these in your own apps. For the most 
part, you will want to fire these functions when the page is loaded and ready, so only 
use those that you need in order to prevent bogging down small devices with loads 
of JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/


Using CSS Preprocessors
If you have already read any part of the book, you already know that I am begging 
you to use a CSS preprocessor, such as Sass or LESS. I prefer Sass for several reasons, 
but I won't really go into the details too much. Instead, I prefer to focus on the 
similarities between the two, and I will leave it to you to decide which framework 
you prefer. I am not being coy or disingenuous; I honestly find such arguments 
exhausting, especially when they come down to individual contexts.

I will say for the nth time that I prefer Sass. For me, some of it is the syntax but the 
differences from LESS are fairly minor. For me, another part of it is that I work mainly 
with Ruby on Rails, and Rails supports Sass right out of the box. Furthermore, I find 
the syntax of SCSS (rather than the older Sass that came earlier) to be so similar to CSS, 
which I've been using for about 25 percent of my life, so I also prefer it because it's less 
of a cognitive shift from CSS, which I know so well.

I also find some of the syntax of LESS to be confusing. The two main examples are 
how they use the @ symbol for global variables, as opposed to the $ symbol that 
Sass uses, and how LESS uses the notation for a CSS class, .(period), to call a mixin, 
whereas Sass uses the more explicit @include. These are admittedly small quibbles.

But, there, those are my reasons. I hope you find them helpful in figuring out what 
works best for you.

Now, let's move on to understanding how all of these preprocessors help you  
work fast and efficiently. Hopefully, this is enough to whet your appetite so you  
can learn more. I will end the chapter with a list of resources, where you can go  
to learn more independently.

www.it-ebooks.info

http://www.it-ebooks.info/


Using CSS Preprocessors

[ 100 ]

Why?
Why do we need something to preprocess CSS? Here are a few simple reasons:

•	 There are no variables in CSS
•	 When styling nested elements, your code will not be DRY, that is, you will 

type a lot of classes and/or IDs repeatedly
•	 It isn't convenient to re-use code in CSS, so you end up with code that  

isn't DRY
•	 There is no logic at all to CSS
•	 Preprocessors allow us to manipulate color relationships in a dynamic way 

rather than statically assigning all color values; this is especially powerful 
when coupled with the ability to use variables

These are broad explanations. This appendix, and essentially this whole book should 
give you lots of detailed examples of when these are useful.

How
Ok, so you've never tried a preprocessor. How do you get started? Of course, that 
depends on whether you choose LESS over Sass. I will walk you through three 
simple ways to use either of the two.

CodeKit
The easiest way to get started is with a Mac OS X application called CodeKit. I don't 
get kickbacks from the maker of this app. It's just a solid, simple app that does tons 
of stuff that used to be kind of a pain. It's not that expensive and you can get it at 
http://incident57.com/codekit/.

If you use anything other than a Mac, you are sadly out of luck as this app is for  
Mac only.

Once you've downloaded and launched it, it is trivial to add a project. The app is 
smart enough to find all the files in your project; more precisely, the files that fit  
into these categories are stylesheets, scripts, pages, and images.

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B

[ 101 ]

CodeKit will preprocess all of these things in various ways; it will even optimize 
your images for you. As much as I am a fan of the command line, the convenience  
of this app has really won me over. I am trying to avoid gushing here but it will  
also do things such as preprocess haml and run JSLint or JSHint; it concatenates  
and minifies all your JavaScipt, optimizes the images, and has many features,  
which I won't go deep into.

But, we are not here right now to use all those things; we are here to discuss how it 
facilitates the preprocessing of LESS and Sass. I am going to continue to describe how 
to set this up with the assumption that you don't own this app yet but just want to 
know more about how it works and, more specifically, how it works with 320 and Up. 
If you are using 320 and Up, and already have all your project files where they should 
be, you don't have to do much of anything else to get started. Just make sure that you 
select the appropriate file that essentially pulls in all the other files, and make sure it 
outputs the right file to the right location. Since CodeKit has an easy UI, all you have 
to do is right-click on 320andup-scss.scss (for example, there is an equivalent file for 
LESS and the others) and set the output path, filename, and so on. That's just about it. 
Now let's look at some command-line tools.

Compass
Compass is a command-line tool that is community-driven. There are also GUIs  
for it. I have less experience with it, but there are lots of tutorials and guides on  
their site if you want to give it a go: http://compass-style.org/. Compass is  
a Ruby gem, so you can install and run it easily on the command line. Compass  
won't process LESS. But the LESS preprocessor is pretty simple to set up with the 
Node package manager.

The Sass/LESS gem
This solution is similar to using Compass. You install a gem on the command line with 
a simple configuration. Just as with the previously mentioned Compass and CodeKit, 
it will look for file changes and process your preprocessed code. I've had issues with 
LESS for successfully looking out for any code changes.

www.it-ebooks.info

http://www.it-ebooks.info/


Using CSS Preprocessors

[ 102 ]

Rails
So, this is technically a fourth way and it's a bit redundant to mention Rails as a way 
to preprocess CSS but you can use any of the previously mentioned gems within a 
Rails project. The Sass gems will watch for code changes and process them without 
any further interaction. Again, in the past I've had issues getting LESS to watch 
for file changes and I had to restart the server to get it to process the code. This is 
unacceptable to me, since it just gobbles up time. On the other hand, things may have 
been fixed by now but I have moved on to Sass for additional reasons, some of which 
I previously outlined.

We will move on to what is happening in the preprocessed code itself in a moment, 
but I just want to tell you that, if you are intimidated by command-line tools, don't be. 
I entered this profession starting out mainly as a graphics guy, and have come to love 
the simplicity and elegance of the command line. There are many simple beginner 
courses that are free or are very cheap online and that will help you to get over your 
fears or confusion. I am a fan of the Learn the Hard Way tutorials, but there are tons 
more, and there will continue to be more. Once you know your way around the 
command line, I can assure that you will be able to work more efficiently than before.

What
Let's look at the sample project we are working with to see how it all hangs together. 
In this book, I focused on the SCSS variant of 320 and Up, so I will continue using 
the same through this appendix. For the most part, LESS is similar but has some 
syntactic differences. I will point out a few key examples along the way.

Let's look at the before project file from Chapter 2, Building the Home Page. Take a 
peek inside the 320andup directory and look at the file structure for the moment. 
The main things I want to focus on are the css directory and the scss directory. The 
other siblings such as less, sass-compass, sass, and scss-compass hold the code 
to skin this cat in a different way.

Moving on to the scss folder, you will notice the file 320andup-scss.scss and a 
bunch of files with underscores in front of them. The files with the underscores in 
front of them, for example, _1382.scss, are called partials. The underscore lets the 
preprocessor know not to turn these individual files into CSS. But they will have 
to get processed eventually though, right? That happens after they get imported 
to the one and only file that doesn't have an underscore in front of it. (LESS, on the 
other hand, does not use this underscore convention. For me, this is another small 
advantage I give to Sass. With Sass, I can make a quick visual scan of the file tree  
and know which files are partials and which aren't.)

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix B

[ 103 ]

Using the 320andup-scss.scss file as an example, think of this file as the mother 
ship. All the other little ships dock there and unload their cargo. Once it's all there, 
things begin to happen. To be specific, CSS happens.

To learn how this comes together, let's look at the mother ship—320andup-scss.scss.

You will notice that the file is just a nice clean file that orders imports. Notice that 
the partials don't have the underscore in front of them in the import statements. 
Also, the ordering is important as, for example, you want to define all your variables 
and mixins before you try to use them. The other imports are placed inside the  
@media queries so that those files preceded by underscores (partials) are only used 
inside those queries.

What's so great about this? It keeps your code super tidy—easy to work with and 
maintain. This is the benefit of the 320 and Up framework. It takes care of the busy 
work of organizing all of this.

Lastly, I want to list some resources for you to check out to learn more about the CSS 
preprocessors and their helpers. Enjoy!

Resources
The following list is a list of resources for you to learn more about CSS preprocessors 
and their helpers:

•	 Sass: http://sass-lang.com/
•	 LESS: http://lesscss.org/
•	 Compass: http://compass-style.org/
•	 CodeKit: http://incident57.com/codekit/

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Index
Symbols
320andup directory  16, 102
320 and Up framework  9

benefit  103
$basecolor variable  32
$inputbordercolor variable  77
$inputborderhovercolor variable  77
$inputborder variable  77
$inputhover variable  77
.big-icon styles  89
@media queries feature

about  35, 36
using  8

<nav> block  21

A
About Me page

font-awesome icon fonts  87
goals  81
justifying  81, 82
markup  84
wireframes, creating  83

action parameter  73
active class  40
Andy Clarke's site

URL  10

B
Baby Bear

about  7
display  7

before directory  12, 18

C
ch2 directory  12
CodeKit

about  100
URL  100, 103
used, for CSS preprocessing  100, 101

Compass
URL  101, 103
used, for CSS preprocessing  101

container class  53
Content Delivery Network (CDN)  19
content panels

building  31, 32
CSS

preprocessing, CodeKit used  100, 101
preprocessing, Compass used  101
preprocessing, LESS gem used  101
preprocessing, Rails used  102
preprocessing, reasons  100
preprocessing, sample project  102, 103
preprocessing, Sass gem used  101

css directory  102
CSS preprocessor

resources list  103
types  99
types, LESS  99
types, Sass  99
using  99
using, reasons  100

D
div method  39
Document Object Model (DOM)  80

www.it-ebooks.info

http://www.it-ebooks.info/


[ 106 ]

document ready function  41
Don't Repeat Yourself (DRY)  9, 47

E
em  49

F
font-awesome icon fonts  87-91
footer

about  15
building  32
designing  15-19
styling  33, 34

for attribute  73
form

layout  71-73
form plan

creating  69, 70
form plan, creating

form layout  71-73
input label  73-79
JS validation, fallbacks  79, 80
mandatory fields, managing  70, 71

G
gallery item JavaScript  67, 68
gallery page

back link, adding  64, 65
building  45, 48, 54, 57
content panel  54-57
desktop view  58
gallery item JavaScript  66, 67
layout  57
mock-up, viewing  48-53
structure  58-63
wireframe, creating  45-47

GitHub
URL  10

Goldilocks
about  7
display  7

H
helper.js file  97

hero
about  14, 29
building  29, 30

HTML5 Boilerplate
about  93, 94
conditional comments  95
helper.js file  97, 98
mobile meta tags  95, 96
scripts  96

I
input label

about  73
working  74-79

Internet Explorer (IE) Version  94

J
JS validation fallbacks

creating  79, 80

L
LESS

URL  103
versus Sass  99

LESS gem
used, for CSS preprocessing  101

M
mandatory fields

managing  70, 71
markup

about  84, 85
putting  85, 86

MBP.autogrow function  98
MBP.enableActive function  98
MBP.fastButton function  97
MBP.hideUrlBar function  97
MBP.hideUrlBarOnLoad function  97
MBP.preventZoom function  98
MBP.scaleFix function  97
MBP.splash function  98
Message field  70
My GitHub Fork

URL  10

www.it-ebooks.info

http://www.it-ebooks.info/


[ 107 ]

N
navbar class  23
navigation

about  14, 21
building  22-29

O
open class  23, 28

P
page components

building  19-28
page components, building

header  20
logo  20
navigation  21-29

page responsiveness
creating  35-38

Papa Bear
display  8

Papa Bear device  7
Phone field  70
prerequisites, RWD

Andy Clarke's site  10
GitHub  10
My GitHub Fork  10

Python
URL  17

R
Rails gem

used, for CSS preprocessing  102
ready function  23, 66, 80
Regex  87
required attribute  74, 79
Responsive Web Design. See  RWD

RWD
about  5
example  6
prerequisites  10
working  6-9

S
Sass

URL  103
versus LESS  99

Sass gem
used, for CSS preprocessing  101

scss directory  102
slide class  40
slider

about  14, 38
creating  39-41

T
type=tel attributes  75

W
webshims

URL  79
wireframes

about  12
creating  83, 84

workspace
preparing  11-13

workspace preparation
content panels  14, 31, 32
footer  15-19, 32-34
hero  14, 29, 30
navigation  14
page building, steps  12, 13
page responsiveness, creating  35-38
planning  12-14
slider  14, 38-42

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Thank you for buying  
Mobile First Design with Html5 
and CSS3

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


Responsive Web Design by 
Example
ISBN:  978-1-849695-42-8            Paperback: 338 pages

Discover how you can easily create engaging, 
responsive websites with minimum hassle!

1.	 Rapidly develop and prototype responsive 
websites by utilizing powerful open source 
frameworks 

2.	 Focus less on the theory and more on results, 
with clear step-by-step instructions, previews, 
and examples to help you along the way 

3.	 Learn how you can utilize three of the most 
powerful responsive frameworks available 
today: Bootstrap, Skeleton, and Zurb 
Foundation  

HTML5 and CSS3 Responsive 
Web Design Cookbook
ISBN: 978-1-849695-44-2            Paperback: 204 pages

Learn the secrets of developing responsive websites 
capable of interfacing with today's mobile Internet 
devices

1.	 Learn the fundamental elements of writing 
responsive website code for all stages of the 
development lifecycle 

2.	 Create the ultimate code writer's resource using 
logical workflow layers 

3.	 Full of usable code for immediate use in your 
website projects 

4.	 Written in an easy-to-understand language 
giving knowledge without preaching 

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


Responsive Web Design with 
HTML5 and CSS3
ISBN: 184-9-693-18-8            Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to 
adapt websites to any browser or screen size

1.	 Everything needed to code websites in HTML5 
and CSS3 that are responsive to every device or 
screen size 

2.	 Learn the main new features of HTML5 and 
use CSS3's stunning new capabilities including 
animations, transitions and transformations 

3.	 Real world examples show how to 
progressively enhance a responsive design 
while providing fall backs for older browsers 

AJAX and PHP: Building 
Responsive Web Applications
ISBN:  978-1-904811-82-4            Paperback: 284 pages

Enhance the user experience of your PHP website 
using AJAX with this practical tutorial featuring 
detailed case studies

1.	 Build a solid foundation for your next 
generation of web applications

2.	 Build a solid foundation for your next 
generation of web applications

3.	 Leverage the power of PHP and MySQL to 
create powerful back-end functionality and make 
it work in harmony with the smart AJAX client

Please check www.PacktPub.com for information on our titles

           ~StormRG~
www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Mobile First – How and Why?
	What is Responsive Web Design?
	Prerequisites
	Andy Clarke's site
	GitHub
	My GitHub Fork

	Summary

	Chapter 2: Building the Home Page
	Preparing and planning your workspace
	Planning ahead
	Navigation
	Hero/slider
	Content panels
	Footer

	Let's build!
	Header
	Logo
	Navigation

	Hero
	Content panels
	Footer
	Making our page responsive
	Slider

	Summary

	Chapter 3: Building the Gallery Page
	Creating the wireframe
	The slim hero
	Content panels
	The gallery detail
	The back link
	The gallery item JavaScript

	Summary

	Chapter 4: Building the Contact Form
	Making a form plan
	Handling mandatory fields
	The form's layout
	Input label magic
	JS validation fallbacks

	Summary

	Chapter 5: Building the About Me Page
	Justifying the About Me page
	Making the wireframes
	The markup
	Awesome icon fonts
	Summary

	Appendix A: Anatomy of HTML5 Boilerplate
	What is HTML5 Boilerplate?
	Conditional comments
	Many, many mobile meta tags
	Including the scripts you'll need
	The helper.js file


	Appendix B: Using CSS Preprocessors
	Why?
	How
	CodeKit
	Compass
	The Sass/LESS gem
	Rails

	What
	Resources

	Index

